Educational Materials

CMU/SEI-90-EM-3
August 1990

Reading Computer Programs:
Instructor’s Guide and Exercises

Lionel E. Deimel

Software Engineering Curriculum Project

J. Fernando Naveda

University of Scranton

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

This document was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this document should not be construed as an
official DoD position. It is published in the interest of scientific and
technical information exchange.

Review and Approval

This document has been reviewed and is approved for publication.

FOR THE COMMANDER

JOHN S. HERMAN, Capt, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright O 1990 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on

ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce,
Springfield, VA 22161.

Use of any trademarks in this document is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1. Introduction 1
1.1. What Is Program Reading? 1
1.2. Overview of This Report 2

2. The Importance of Program Reading Skills 5
2.1. Growing Awareness of Program Reading Issues 6

3. How Do People Read Programs? 9
3.1. What Is Program Understanding? 9
3.2. Program Reading Strategies 11

4. Readability Factors and Tool Support 15
4.1. Factors Affecting Program Readability 15
4.2. Readability and Style 17
4.3. Tools and Techniques 17

5. Teaching Program Reading 21
5.1. Need Program Reading Be Taught? 21
5.2. Teaching Strategies 22
5.3. Some Additional Ideas 26

6. Constructing Reading Exercises, with Examples 29
6.1. Evaluating Program Reading Skills 29
6.2. Example Program Reading Questions 32

6.2.1. Knowledge-Level Questions 36
6.2.2. Comprehension-Level Questions 38
6.2.3. Application-Level Questions 39
6.2.4. Analysis-Level Questions 41
6.2.5. Synthesis-Level Questions 44
6.2.6. Evaluation-Level Questions 46

Annotated Bibliography 49

Acknowledgements 69

Appendix: Program Source Code 71

Diskette Order Form 169

Reading Computer Programs:
Instructor’s Guide and Exercises

Abstract: The ability to read and understand a computer program is a criti-
cal skill for the software developer, yet this skill is seldom developed in any
systematic way in the education or training of software professionals. These
materials discuss the importance of program reading, and review what is
known about reading strategies and other factors affecting comprehension.
These materials also include reading exercises for a modest Ada program and
discuss how educators can structure additional exercises to enhance program
reading skills.

1. Introduction

This report has two main objectives: to convince teachers of future computer profes-
sionals of the importance of program reading, and to provide sample exercises to facil-
itate the teaching of program reading. We will review the literature relevant to pro-
gram reading, and discuss teaching approaches and techniques. A large part of the
report is devoted to the listing of an Ada program for which we provide reading ex-
ercises that fulfill a range of educational objectives. The program and exercise ques-
tions are available on diskette from the Software Engineering Institute (SEI). An order
form for machine-readable versions of this material is provided at the end of the report.
Readers are encouraged to adapt the materials to their own particular needs.

Although the reading exercises are based on the Ada programming language, it would
be a mistake to view this as an “Ada report.” Most of what we will say about program
reading is independent of any particular language, although we make no special at-
tempt to discuss languages other than high-level procedural ones. Ada is an attractive
vehicle to illustrate reading exercises because it contains good mechanisms for concur-
rency, information hiding, and the like. Exercises are provided to explore these facil-
ities and to explore the Ada language generally. The reader whose students are not
using Ada can nonetheless benefit from the ideas we present, including our suggestions
for generating reading exercises from materials other than those provided here.

1.1. What Is Program Reading?

By program reading (or code reading), we mean the process of taking computer source
code and, in some way, coming to “understand” it. We mean to make no presupposi-
tions about whether or not the code contains internal documentation (comments) or
whether any form of external documentation (design, structure charts, etc.) is available
to the reader or can be easily created.

Presumably, some of what can be said about code reading also applies to attempts to
understand other documents—software specifications or designs, for example. We will

CMU/SEI-90-EM-3 1

not, however, attempt to generalize to these other life-cycle products, in part because of
their diversity of representation. Except where we note otherwise, we mean for our
remarks to be applied only to the realm of high-level procedural languages, although
much of what we will say applies to code outside this class.

We will have more to say about what we mean by “program understanding.” For now,
it is important to realize that we do not often read programs for what might be intui-
tively described as “total understanding.” We usually read programs for particular
purposes—to determine if they have particular properties such as correctness, or to dis-
cover how an enhancement can be made with minimal disruption to the program’s cur-
rent functionality. When we speak of reading a program, we refer to a process that
aims to achieve whatever degree of understanding is needed to accomplish our partic-
ular objectives.

1.2. Overview of This Report

In the next chapter, we argue the importance of developing program reading skills
among software developers. We also mention educational issues associated with pro-
gram reading, issues we will deal with at greater length in Chapter 5.

In Chapter 3, “How Do People Read Programs?,” we discuss theoretical and empirical
research on program reading, and examine proposed models of program comprehen-
sion. We try to answer questions such as: “What does it mean to understand a
program?” and “How do programmers ascertain the meaning of a program?” The chap-
ter provides useful background for the instructor who wants to teach program reading
skills. Some of this material should also be shared with students in lectures.

Chapter 4, “Readability Factors and Tool Support,” discusses factors that affect the
ease with which a program can be understood. Much stylistic advice to programmers
in the literature is implicitly based on assumptions about what makes a program read-
able. Likewise, observations about factors that make a program readable imply cor-
responding style rules. In this chapter we look at the relation of empirical observations
to programming standards. We also discuss tools that can make program reading eas-
ier, now or in the future.

In “Teaching Program Reading,” Chapter 5, we assert that program reading is a skill
that should be taught explicitly. We discuss what can be taught and how. We also look
at other uses of program reading in the classroom, whereby students can develop their
reading skills in the pursuit of other educational objectives.

Chapter 6, “Constructing Reading Exercises, with Examples,” contains a discussion of
how to construct program reading exercises. The chapter also contains specific ex-
ercises targeted to a variety of educational objectives and based on the concurrent Ada
program listed in the Appendix.

We have included an annotated bibliography, which contains not only references cited
in the text, but also related literature. We have tried to indicate the significance of
each entry and suggest how it might be used in teaching. In most cases, we have sum-

2 CMU/SEI-90-EM-3

marized the content of the entry. These annotations often elaborate on ideas treated
only briefly in the text. The bibliography is by no means complete, but we believe that
interested readers can locate other reading-related papers and monographs that might
be of interest to them by reading the references we have included, many of which them-
selves have excellent bibliographies.

CMU/SEI-90-EM-3 3

CMU/SEI-90-EM-3

2. The Importance of Program Reading Skills

The successful programmer must master a number of diverse skills. One that is often
overlooked is the ability to read and understand a program. Reading competence is
most obviously relevant to program maintenance, for which the programmer must gain
sufficient understanding of the code to design modifications that extend, adapt, or cor-
rect it, while retaining its logical, functional, and stylistic integrity. Since, typically,
more than half the resources devoted to a program over its lifetime is expended on
maintenance, and since reading the program can be an important step in the mainte-
nance process, lack of adequate reading skills among maintenance personnel can have
serious financial consequences.

But program reading ability is also important in non-maintenance activities. Effective
code verification and code reviews require reviewers to understand and analyze the
code under scrutiny. The expert reader is a valuable team member in such cir-
cumstances, as well as a resource to colleagues when they are having a difficult time
debugging.

Code reading provides an all-too-infrequent opportunity for programmers to share and
learn from one another’'s work. Code examined in formal reviews and in program
libraries and repositories; published programs; and code found in professional journals
all offer the programmer the chance to deepen his understanding of his craft and im-
prove his skills.l Learning a new programming language is often facilitated by reading
existing code written in that language by more experienced programmers. Studying
programs in this way allows the programmer to gain a sense of proper idiom and style
more quickly and surely than does studying language reference manuals, style guides,
and coding standards.

A programmer who reads programs effectively can increase his code generation effi-
ciency. He is better able to find and evaluate code that can be reused or adapted than
are his less program-literate colleagues. This ability allows him to avoid a good deal of
coding altogether. When working on a large software system, a programmer needs to
be reminded of the details of code written so long ago that those details are no longer
fresh in his mind. Facility in reconstructing such information from code, even one’s
own, can therefore be a valuable asset.

Students in academic programs do get occasional opportunities to practice reading pro-
grams. They are presented with code in introductory and data structures textbooks,
and possibly in textbooks used in courses on other topics, such as analysis and design of
algorithms. Students are sometimes given example programs by their instructors and
may have to struggle to make sense of program units written by fellow students on
team projects, such as might be part of an introductory software engineering course.
Rarely, examinations require students to interpret code.

Iwe will follow the traditional convention of using masculine terms where the person
spoken of may be either male or female. No offense to female professionals—who are
distressingly underrepresented in the workplace—is intended, of course.

CMU/SEI-90-EM-3 5

Nonetheless, it is fair to say that the improvement of program reading skills is vir-
tually unknown as an explicit educational objective among those teaching future soft-
ware developers. Yet the available evidence suggests that our current neglect of the
topic cannot be justified by the argument that adequate program reading skills develop
naturally and without special encouragement in students otherwise well prepared to
enter professional practice.

We advocate that instructors undertake activities designed to teach and improve pro-
gram reading skills among their students. Although this suggestion is radical and
largely untried, substantial benefits might be gained. Not only is there potential for
graduating students better able to perform important tasks such as program mainte-
nance, but there is also a realistic hope that students will become better learners in
advanced courses by virtue of their greater ability to understand program examples
that illustrate specialized techniques. Such students should also be better learners on
the job. Classes of competent program readers can be given examination questions to
test their program-writing skills more reliably by means of questions based on program
fragments that must be read.

No doubt, many educators will object to our suggestion of teaching program reading,
protesting either that educators have no idea how to carry out such a suggestion or that
they have no time to do so. We will try to counter these arguments by enumerating
techniques that can be used in the classroom, including activities that use program
reading incidental to achieving unrelated educational objectives. We must point out
that, although no one disputes the importance of teaching program writing skills, there
is hardly a consensus about the most effective way of doing it. Reading skills seem
equally important, and our lack of educational experience teaching them seems a poor
excuse for continuing to ignore program reading in the classroom.

2.1. Growing Awareness of Program Reading Issues

Program reading seems to be attracting increasing attention, largely because of its
pivotal role in maintenance. As early as 1971, however, Gerald Weinberg lamented the
decline in the practice of reading programs brought about by time-sharing [Weinberg71].
He was less concerned with the role of reading in maintenance than with its potential
for teaching; programmers could learn a good deal from reading the programs of others,
as well as their own. In the preface to their well-known book, The Elements of Pro-
gramming Style, Kernighan and Plauger make a similar point about the educational
value of reading programs [Kernighan74]. Knuth was so taken with the benefits of pro-
gram reading that he designed a programming scheme, literate programming, that rec-
ognizes the human reader to be as important as the mechanical one [Knuth84]. He has
published two programs in this form, each of which is a sizable book [Knuth86a,
Knuth86b]. David Moffat published a more modest collection of program readings in
Pascal for the beginning student [Moffat84] and suggested, with Lionel Deimel, that pro-
gram reading can play a central role in the teaching of programming generally
[Deimel82].

6 CMU/SEI-90-EM-3

Much of the literature on program reading deals with program comprehension, which
encompasses both what it means to comprehend a program and the process by which
that comprehension is reached. Lukey [Lukey81] lists three approaches to studying pro-
gram comprehension—the observational approach, the experimental approach, and the
artificial intelligence approach. Roughly, these approaches correspond to the study of
programmers reading programs to see what they do, the study of programmers reading
in situations where certain factors are fixed and others are allowed to vary in con-
trolled ways, and the production of tools that serve to mechanize or assist in the pro-
gram comprehension process. Papers describing each approach have not only increased
in number over the years, but also are now more likely to appear in such “mainstream”
computer journals as Communications of the ACM.

Of course, observations of what makes a program readable have implications for how
programs should be written and formatted. In addition to a number of books advo-
cating a certain programming style (e.g., [Kernighan81]), some authors are making more
radical proposals affecting the visual display of programs [Baecker90, Oman90a,
Oman90b], or are looking to environments that support program reading in a more or-
ganic way [Goldberg87].

We consider it important and exciting that both the Florida/Purdue Software Engineer-
ing Research Center (SERC) [wilde89] and IBM [Corbi89] have undertaken significant
efforts to study program comprehension and to explore tools to assist programmers in
reading programs effectively. We expect such tools eventually to become commonplace,
although they will not obviate the need for programmers to have good program reading
skills of their own in order to use these tools effectively.

CMU/SEI-90-EM-3 7

CMU/SEI-90-EM-3

3. How Do People Read Programs?

What do we know about how people read or should read programs? Several writers
have offered advice about how we should go about reading code. Through experimental
and observational studies, we have indications of how actual programmers behave
when trying to understand unfamiliar code. Finally, there have been many attempts to
construct models of program understanding, both to explain empirical findings and to
make useful and verifiable inferences about how program reading can be carried out
more effectively. Let us look at models of program understanding or, as they are
usually called, “program comprehension” models.

3.1. What Is Program Understanding?

If we are to construct a useful theory of program reading, we require a model to help us
explain how we come to understand a program, as well as what we can be said to know
when we do understand that program.?2 There must be a computer science component
in any such model, of course, but there are also behavioral and psychological compo-
nents. Many researchers in the field of program reading have approached their studies
from a cognitive psychology or artificial intelligence point of view. Although this is not
remarkable, we point it out to alert the reader that the study of program reading, while
important to software engineering, is not strictly an area of computer science research.

Let us first look at what we know when we understand a program. Almost any pro-
grammer could generate a useful list. We understand what each statement means,
how flow of control passes from one statement to another, what algorithms have been
employed, how information is represented and transformed in data structures, which
subprograms invoke other subprograms, and how the program interacts with its envi-
ronment. Ruven Brooks has described all this information as a succession of
“knowledge domains” that bridge between the problem domain and the executing pro-
gram [Brooks78, Brooks82, Brooks83]. A knowledge domain is a collection of information
about objects of some sort and relationships among those objects. (One may think of
this in the mathematical sense of a set of objects, a collection of relations, and so forth.)
According to Brooks, the knowledge domains include (or may include): the problem
domain; the domain of some mathematical model for the real-world problem; an al-
gorithmic domain of abstract data structures and operations; an implementation
domain of arrays, assignments, and the like; and a domain of bit patterns stored and
manipulated in specific storage locations within the computer. (It is easy to argue
about the boundaries of these domains and whether there are more or fewer of interest.
Certainly the program structure domain—which includes objects like procedures, func-
tions, and tasks—deserves mention.) If one really understands a program, according to
this theory, one possesses the knowledge of each of the domains, as well as the ability,
through knowledge of inter-domain relations, to relate conceptionally adjacent domains

2We use the term “program” to mean any appropriate piece of code, be it a complete
program, a subprogram, or even an isolated segment.

CMU/SEI-90-EM-3 9

to one another. The process of understanding a program is one of constructing (or
reconstructing) the knowledge domains and relations among them from the code, com-
ments, and whatever other documentation is available.

Even in the absence of theoretical or empirical underpinnings, Brooks’'s model is intui-
tively appealing. It seems to capture succinctly most of what might reasonably be con-
strued as knowledge about a program, and it suggests particular ways in which our
knowledge can be incomplete. For example, we may understand a program perfectly
statement-by-statement, yet fail totally to comprehend, on a more abstract level, what
it does and why. Brooks has used his model to make inferences about documentation.
Effective documentation communicates information not explicitly present in the source
code itself (i.e., it adds to the information available to the reader). Therefore, lan-
guages like traditional FORTRAN may require more explanation of their code than
languages like Pascal, which allow direct manipulation of higher-level abstractions
[Brooks82].

Another point made by Brooks deserves special mention, namely that the code itself
(i.e., the actual source-language statements) is not the ultimate authority with respect
to program meaning. On one hand, this statement is surprising. A program designates
some computation, which may be taken to be its semantics or meaning. Therefore,
given a well-defined programming language and computing platform, a syntactically
correct program definitively specifies what the program does. It is this point of view, as
expressed by Kernighan and Plauger in The Elements of Programming Style
[Kernighan74], that Brooks attempts to counter. Kernighan and Plauger argue that a
program and its documentation provide multiple representations that are subject to in-
consistencies and that, therefore, “the only reliable documentation of a computer pro-
gram is the code itself.” Brooks argues, in effect, that such a position ignores the larger
context in which programs exist. To begin with, a program’s function is partly a matter
of the interpretation given the input and output, information perhaps only hinted at in
the code. Further, for purposes such as maintenance, explicit statements about as-
sumptions and design decisions that led to the source code may be more important than
the code itself for the programmer trying to understand the program.

Several authors have proposed models similar to that of Ruven Brooks. The differences
among these models seem mostly confined to minor details and nomenclature. In any
case, the layered structure of one’s knowledge of a program is a common element in all
these theories.

Shneiderman and Mayer have proposed a “syntactic/semantic” model of programmer
behavior [Shneiderman79]. The model is intended to apply to writing programs, as well
as reading them, modifying them, and learning to program. The model assumes that
semantic and syntactic knowledge is stored in long-term memory and manipulated in
short-term memory and working memory. Program comprehension, they suggest, is
largely a matter of building up a hierarchy of semantic knowledge about the program,
with information about what the program does at the top of the hierarchy, and lower-
level information about statements and algorithms below. The representation is in
terms of abstractions (representing the function of groups of statements, for example)
derived from the program text. All the mental machinery of the syntactic/semantic

10 CMU/SEI-90-EM-3

model seems less useful than one might hope, as we simply do not know enough details
of how programmers perform. The state of understanding a program, however, seems
guite similar to that postulated by Brooks.

Letovsky refines some of Brooks's notions and speaks of the reader’'s knowledge base
(presumably the reader’s syntactic and semantic knowledge) and mental model of the
program being read [Letovsky86a]. In referring to the reader as a knowledge-based
understander, he emphasizes what is implicit in Brooks’'s discussions but is more
prominent in the model of Shneiderman and Mayer, namely that the reader brings a
good deal of expert knowledge to his task. Letovsky brings something of an artificial
intelligence perspective to what knowledge the reader has and what his mental model
looks like. According to him, when a reader has a complete understanding of a pro-
gram, he possesses a description of the goals of the program, the actions and data
structures of the implementation, and an explanation of how goals or subgoals are ac-
complished by the components of the implementation. His hierarchy is one of goals and
subgoals. All of these models, however, involve layers of knowledge that become
progressively more abstract and that are ultimately tied to larger and larger fragments
of the program.

3.2. Program Reading Strategies

The question “How do you read a program?” may seem strange to a beginning student.
Yet, the obvious answer, “from top to bottom,” is hardly the correct one. To begin with,
the sequence of statements in the text of a program does not correspond in a
straightforward way to the order in which the statements are executed when the pro-
gram is running. This correspondence is complicated by the syntactic rules that deter-
mine the placement of subprograms and other definitions, and by statements that alter
the sequential flow of control. Additionally, the execution path through a program is,
in general, a function of the input data; it therefore differs from one invocation of the
program to the next.

These statements may seem unremarkable. Because we believe students should be
taught early how to read programs, however, it is important to make the statements,
lest students develop fundamental misconceptions at the outset. Programs are not
read like novels, nor is their meaning determined by seeing how they behave when run
or hand-traced using test data. Building from a program the layered abstractions that
become one’'s mental model of it—Letovsky calls the process assimilation [Letovsky86a]l—
is a complex task that is only beginning to be understood. How does the program
reader construct a mental model of a program, whatever the exact nature of that model
might be?

To begin with, there are many factors that may simplify assimilation of a program or
make it more difficult: the knowledge and experience of the reader, the complexity of
the algorithms used, the programming language, the use of structured programming
techniques, the presence and quality of comments in the code, the availability of exter-
nal documentation, etc. We will discuss these factors briefly in Chapter 4. Insofar as
possible, we will gloss over them in the discussion that follows.

CMU/SEI-90-EM-3 11

Empirical evidence suggests that the human program reader is what Letovsky calls an
“opportunistic processor,” capable of using multiple reading strategies [Letovsky86al].
The basic strategies people have written about, however, are top-down and bottom-up.

Top-down reading of a program is analogous to the more familiar top-down develop-
ment approach. One begins by gaining an understanding of the overall purpose of the
program, then tries to understand how that function is implemented by component
pieces. In carrying through this process, the reader forms hypotheses about these
pieces—they may be procedure calls, individual loops, or other fragments—which are
later verified or modified through recursive application of this method. Letovsky de-
scribes this approach as building a representation of the specification first and then
working down to the implementation level.

Reading bottom-up proceeds in the opposite direction. Understanding of small frag-
ments of code is aggregated into descriptions of larger pieces of the program until the
overall program function and strategy have been discovered.

It is worth noting here that two characteristics of a program have a dominant influence
on reading approaches that may be available: the degree of documentation and whether
the program is structured. Linger, Mills, and Witt point out that poorly documented
code generally must be read bottom-up, as the lack of documentation can make it
nearly impossible to devise hypotheses about what various sections of code accomplish
without examining those sections of code in detail. Well-documented code can usually
be read top-down [Linger79].

In explaining how the function of a structured program can be ascertained from an un-
derstanding of its primitive components, Linger, Mills, and Witt also explain why un-
structured programs are difficult to understand. Unstructured code cannot easily be
resolved into components that interact with one another in a limited number of simple
ways. Although the program comprehension literature discusses programs having
various levels of documentation, we are aware of virtually no work done on unstruc-
tured programs. Researchers advise readers to restructure their programs algorith-
mically and then read the newly structured program [Basili82, Linger79].3 Tools are
available to perform restructuring, at least for some languages, such as COBOL.

The bottom-up approach to understanding a program is perhaps the easier of the two
basic strategies to explain. It is the simpler and, in the sense that it can be applied
with success in the most situations, the most general. Basili and Mills show the appli-
cation of a bottom-up approach to program understanding in [Basili82]. Their approach
is very formal, but the formality is inessential to understanding the basic strategy. Af-
ter converting their program into a structured program, they begin to assign meaning
(function) to each prime program, each structured unit such as an if ... then ... else
(see [Linger79]). This assignment of meaning may be done through “direct cognition,” or

SBecause much unstructured code still exists, we can ask if we should teach our stu-
dents how to deal with it. Probably advocating the procedure described here is the best
approach. Surely unstructured code can be read, and even maintained, but procedures
for reading and maintenance are necessarily ad hoc.

12 CMU/SEI-90-EM-3

it may require more deliberate analysis. Since a structured program is composed only
of sequenced and nested structured units, the function of larger fragments of the pro-
gram may be discovered by combining the functional descriptions of smaller program
components in standard ways. Carrying this process through, one arrives at a func-
tional description for the entire program, as well as additional information collected
along the way. Linger, Mills, and Witt call this strategy stepwise abstraction, and it is
certainly a process programmers carry out all the time, particularly for small segments
of code.

Shneiderman describes program comprehension as proceeding in a similar way, though
he substitutes the language of psychology for that of mathematics. He describes the
reader as recognizing the function of groups of statements as “chunks” and combining
these chunks to explain larger program fragments [Shneiderman79].

In Brooks's model, the primary assimilation process proceeds top-down. Brooks
obliquely acknowledges that people do use bottom-up strategies, but he dismisses them
as less powerful [Brooks83]. The process Brooks describes is one of repeated hypothesis
generation and verification. Knowing whatever he knows about the code, the reader
generates hypotheses about what the program does and how. He tries to verify these
hypotheses by examining the code. Evidence that feeds hypothesis generation comes
from the program text, program comments, and whatever additional documentation
may be available. If the reader sees a variable named DI ST_TBL, for example, he
might conclude that it probably stores a table of distances between locations. He would
then try to verify this hypothesis by further examining the code. Hypothesis gener-
ation begins with what is known about the overall function of the program, which often
by itself causes the reader to expect to see certain features in the program—sorts,
master and transaction files, and the like. Hypotheses tend to be non-specific and
therefore usually are not directly verifiable. Instead, they cause subsidiary hypotheses
to be generated in a hierarchical fashion until a level is reached at which hypotheses
can be directly verified or proven false. The reader scans the code in various ways
searching for clues in the text that bear on current hypotheses. In this scanning proc-
ess, he looks for “beacons,” which are typical evidence for certain structures or opera-
tions. Two nested loops might be a beacon for a sort, for example. The program is
understood when verified hypotheses have been bound to all code in the program.

Several empirical studies have added to our understanding of what programmers ac-
tually do when reading programs. Videotaped protocols of professional programmers
modifying a program are the basis of papers by Letovsky [Letovsky86a] and Littman,
Pinto, Letovsky, and Soloway [Littman86]. Both these papers contain extensive descrip-
tions and analyses of what the subjects did. The data show quite clearly that they do
not employ pure top-down or bottom-up strategies, but freely mix the two. Insight into
why this should be so comes from Letovsky’s paper, in which he classifies questions the
subjects posed to themselves. For example, a “how” question (“So let's see how it
searches the database.”) is top-down in nature; a lower-level implementation is sought
for a goal. A “why” question (“It's setting | PTR to zero. I'd like to know why.”) is look-
ing in the other direction; a goal is sought for a part of the implementation. Other
guestions discussed in the paper are “what” questions (“I want to find out what field 7
is.”) and “whether” questions (“Is this subroutine actually deleting a record or is it just

CMU/SEI-90-EM-3 13

putting a delete mark there, and the record is still there?”). Programmers are clearly
seen here engaged in the sort of activity Brooks describes. When seen in its detail,
however, the process is not simply characterized. Letovsky also describes particular
techniques programmers use to generate hypotheses (he calls them conjectures) to an-
swer their questions.

Littman, et al., emphasize a different aspect of reading strategy. They report that sub-
jects in their study used either what they call a “systematic” strategy or an “as-needed”
strategy. Subjects either tried to completely understand the program being modified,
or else they tried to gain just enough knowledge to make the change requested in the
program. This raises the question of reading objectives; not always—perhaps not even
often—does the reader really need to know everything about a program. One’s ap-
proach to reading is presumably conditioned by one’s purpose for reading. This paper
provides a warning, however. Subjects who used the systematic strategy, employing
extensive symbolic execution of the code, successfully modified the program. Those
who cut corners with an as-needed strategy were unsuccessful at the modification task,
as they failed to detect critical interactions among program components. This is a dis-
tressing outcome, as truly large programs may not be amenable to total understanding.

Although the Letovsky and Littman papers suggest that actual comprehension strat-
egies are eclectic,* they do not cast doubt on the layered mental models discussed in the
last section. A similar message can be inferred from [Pennington87]. Pennington found
that readers who focus on both the problem domain and the program domain, as op-
posed to focusing on one or the other, are more successful, a result one might reason-
ably expect from, say Brooks's model of comprehension.

Several of the references contain brief but useful reviews of at least part of the program
comprehension literature. See, for example, [Baecker90], [Corbig89], [Crosby90], and
[Wilde90].

4Students should understand both top-down and bottom-up strategies, and should be
familiar with descriptions of the eclectic processing that is apparently typical. Know-
ing about alternative strategies should help students select appropriate ones in partic-
ular situations.

14 CMU/SEI-90-EM-3

4. Readability Factors and Tool Support

In this chapter, we further examine the pragmatics of reading programs. What are the
factors—either internal or external to the program—that affect how difficult a program
is to read? How does the style with which a program is written affect its readability,
and how can observations about readability be translated into useful coding style
guidelines? We will also examine reading strategies in more detail and see how exist-
ing and future software tools can aid the program reader.

There is inadequate space here to treat these topics thoroughly. There are, however,
few actual facts to cite. Our knowledge is tantalizing and fragmentary, with most of
the obviously interesting questions having ambiguous answers (how long should a pro-
cedure be?) or none at all (what is the most readable programming language?). Yet
software development is a practical enterprise, not a theoretical one; we cannot wait for
the answers. We must look for credible insights wherever they are to be found, and
forge ahead.®

4.1. Factors Affecting Program Readability

The study of program comprehension naturally leads us to the question of what makes
a program readable. We do not have a complete theory that allows us to predict the
readability of a program, but it is not difficult to offer a list of parameters that might be
important. Some of these factors have been investigated systematically, some not.
(The recently published bibliography by Thomas and Oman contains references to
many of the factors discussed below [Thomas90].) We may classify these parameters
into the following categories:

1. Reader characteristics.
2. Intrinsic factors.

3. Representational factors.
4. Typographic factors.

5. Environmental factors.

It should be clear from the previous chapter that the reader has a great effect on how
successfully a particular program is read. Comprehension models suggest that the
reader’s knowledge—of programming, of the programming language, and of the appli-
cation domain—as well as his reading strategy are important variables [Brooks83]. The
reading strategy is sometimes a function of the programmer’s purpose in reading. For
example, the as-needed strategy in response to limited goals, described by Littman, et
al., in [Littman86], led directly to comprehension errors. In [Letovsky86b], Letovsky and
Soloway describe how the unwillingness of readers to search for information not imme-

SWe did this in the case of structured programming, for instance. Although structured
programs have certain logical advantages over non-structured ones, we have never
proved that structured programming is superior. Even the hypothesis is ill-defined.

CMU/SEI-90-EM-3 15

diately near the code they are examining predictably leads to comprehension errors.
Perhaps because program reading skills have not traditionally been taught, more than
one study have included statements like the following from [Littman86]:

Finally, we note that there was virtually no relationship between years of
professional programming experience and either successfully performing the
enhancement task or the programmer’s choice of study strategy.

Perhaps this is another manifestation of the well-known disparity in efficiency among
professional programmers.

It is reasonable to suppose that programs possess a greater or lesser degree of intrinsic
complexity, which affects their readability. It is difficult to say how to measure this
complexity, and, for this reason, the field of software metrics is controversial. Surely a
“hello, world” program is less intrinsically complex than the average program to com-
pute Bessel functions. Moreover, concurrent or real-time programs are probably more
complex than comparable programs without these characteristics, and very large pro-
grams are difficult to read simply by virtue of their size. Brooks notes that there are
abstruse problems that have simple programs as their solutions; the nature of the prob-
lem may still make these programs difficult to comprehend [Brooks83]. Shneiderman
discusses logical, structural, and psychological complexity of programs and their rela-
tion to comprehensibility in [Shneiderman80].

The term “representational factors” is deliberately broad. It is easy to subdivide,
though it can be difficult to make clear distinctions among the resulting categories. We
mean to include such parameters as the programming language, the nature and inclu-
sion of comments, the architectural structure of the program, the choice of identifiers,
and other choices that need to be made to generate the logical program, while exclud-
ing those choices involved with the relative placement of program characters, which we
put under “typographic factors.” Many of these factors are discussed in [Shneiderman80].
Brooks [Brooks83] makes some interesting remarks about documentation, which apply
to internal comments. He suggests that:

* Different kinds of documentation are helpful at different stages of com-
prehension. In the early stages, high-level program descriptions are help-
ful, whereas in later stages, lower-level information is more useful.

« Different languages need different kinds of documentation.
* Too much documentation can obscure as much as it can illuminate.

Typographic factors include the use of upper- and lowercase, fonts, color, and white
space. We mean to distinguish between the logical program and the representation of
it presented to the user. This allows us to include in this category rearrangements of
the code such as that effected by literate programming systems [Knuth84]. Interesting
studies have been made concerning typographic factors. One of these was done by
Miara, Musselman, Navarro, and Shneiderman [Miara83]. In this carefully done study,
the authors concluded that indentation to show structure does enhance program
readability, though it is possible to have either too little or too much indentation.
Other studies can be found in the bibliography of this document, in [Shneiderman80], or
in the Thomas and Oman bibliography [Thomas90].

16 CMU/SEI-90-EM-3

Our term “environmental factors” is also somewhat of a catch-all. We mean to include
both the physical and the logical environment in which reading takes place. One may
place room temperature in this category for completeness, but we have in mind partic-
ularly factors, such as: the medium of the program (paper, CRT monitor); external doc-
umentation; and software tools, like editors and compilers. Interestingly, in this age of
high-definition workstation monitors, there are many circumstances in which program-
mers still prefer using paper listings, and presumably are more efficient workers for
doing so [Oman90a].

4.2. Readability and Style

A good deal has been written, much of it atheoretical, about programming style, a term
denoting an array of software-writing practices involving choice of identifiers, effective
use of language features, commenting conventions, indentation, use of white space, use
of case and font, and the like. To the degree that we learn about what makes a pro-
gram readable, we should be able to turn this knowledge around and make it into pro-
gramming style guidelines that should produce more readable programs. Instructors
who want to teach program reading should be sure their students make this connec-
tion. The reader is directed to [Baecker90], [Oman90b], [Shneiderman80], and [Thomas90].

4.3. Tools and Techniques

As we have seen, actual program reading behavior is complex. Although we cannot
offer a general plan for reading programs, we can provide hints, suggest simple tools
that can be used, and catch a glimpse of automated support that might be available in
the future.

We begin with a list of ideas for program reading, designed more for suggesting what
sort of advice we can offer our students than as a complete bag of tricks. Readers can
no doubt add their own entries to our list:

1. Be aware that code and comments (or other documentation) may not
agree. The code may be correct and the comments wrong, or the reverse.
Both may be wrong. (The code may not accomplish what it is supposed to
do, and the comments may describe neither what should be done nor what
is done.)

2. Use indentation to help understand structure. However, incorrect inden-
tation (more likely to come from a human than a compiler or
prettyprinter) may be misleading.

3. Try to build a model of the style conventions used in the program. If, for
example, a consistent scheme has been used for identifiers, this knowl-
edge can be used to help understand the meaning of newly encountered
identifiers. It is important to read the program with the programmer’s
conventions, rather than your own, in mind.

CMU/SEI-90-EM-3 17

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.
20.

. Be wary of apparently analogous functions performed in non-analogous

ways. Arbitrary or stylistic differences may simply indicate programmer
inconsistency, but they may also signal modified code (a maintainer with
different habits has modified the code) or code whose functions are not as
analogous as they might at first appear.

. Consider the possibility that the programmer did not know what he was
doing.
. Watch out for code written to overcome compiler or computer limitations

or code containing apparently magic numbers.

. Watch out for use of nonstandard language features. (Some compilers, for

example, initialize variables that other compilers do not.)

. Use stepwise abstraction.

. Odd-looking arithmetic operations may be required to maintain accuracy.

Consider possible roundoff implications.

Because changes to the code often introduce errors and inconsistencies,
look for evidence of changes. Look for change logs or comments about
changes imbedded in comments. Stylistic differences can indicate
changes by a programmer other than the author. If multiple versions of a
program exist, using a tool to find changes (e.g., UNIX di f f) can be help-
ful.

If, after a good deal of study, a piece of code is making no sense, ask
another programmer to look at it. Consider explaining to him what you
think you do know.

Search for information, particularly in documentation, that relates objects
in different knowledge domains, for example, comments that associate
variables with problem-domain objects.

Be wary of objects that have the same identifier but different scopes.
Reasoning about the wrong objects can be frustrating.

Be wary of objects having nearly the same names, particularly those
whose identifiers differ by a single character.

Particular code may be an artifact that no longer serves a function.

Be sure you make no inessential assumptions when reasoning about con-
current programs.

Be alert for variables that serve more than one function or that are used
inconsistently, as they can mislead the reader.

The effect of apparent bugs in the program can be undone by an inverse
bug somewhere else.

Use symbolic execution to determine function.

Use code substitution to verify or refine hypotheses. Substitute code for
what you think is being performed into the program, and examine how
your code differs from what code is actually there.

18

CMU/SEI-90-EM-3

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Tracing code with test data, whether by hand or using a symbolic debug-
ger, will not by itself tell you what function the code performs. However,
it can help suggest some hypotheses and eliminate others.

Be alert for literals that are conceptually distinct but that happen to have
the same values. (The trouble usually begins when one tries to modify
such code.)

In languages that permit operator overloading, be sure the operator you
think you have is really the one you do have.

Be willing to abandon hypotheses for which there is insufficient evidence.

Use program slicing [Weiser81]. Throw out parts of the program irrelevant
to the particular function or state of the program of interest, in order to
study the program.

Use an editor or browser to traverse the code. Editors that support multi-
ple windows can show several parts of the program at once.

File search tools such as UNIX gr ep can be used to find identifiers that
may be in one of several files.

In the absence of tools like a cross-reference generator, such unlikely tools
as spelling checkers can be useful for listing the identifiers used in the
program.

Traditional debugging techniques can be used to read code. The addition
of print statements, for example, can be useful in verifying hypotheses.

Read programs with a cross-reference listing, structure chart, or similar
summaries of program information close at hand. It is sometimes useful
to generate such charts by hand if they cannot be obtained automatically.

Although programmers commonly use compilers, editors, and prettyprinters, in the fu-
ture, more sophisticated tools to assist with program reading may become available.
Prototype tools for viewing programs in different ways and exposing dependencies

among program components are described in [Cleveland89], [Pazel89], and [Wilde89].

It

has even been suggested that stepwise abstraction may be automated to some degree.
Wilde [Wilde90] discusses kinds of program dependencies that may be of interest to the
program reader, as well as reading tools.

CMU/SEI-90-EM-3

19

20

CMU/SEI-90-EM-3

5. Teaching Program Reading

In this chapter, we consider activities that educators can use to teach students how to
read programs, and help them to improve their program reading skills. We also con-
sider how program reading can be used in situations where teaching reading skills is
not the principal educational objective.

5.1. Need Program Reading Be Taught?

We argued in Chapter 2 that program reading skills are important to the software pro-
fessional. But need we, as educators, work consciously to develop these skills among
students, or may we assume that reading skills are somehow “picked up” along the way
to gaining program writing competence?

Although it is no doubt true that some students seem to develop reading skills effort-
lessly—as effortlessly and mysteriously as they achieve writing skills—we believe that
reading skills, in general, require cultivation. We have four reasons for this belief:

1. The nature of reading and writing skills.

2. The typical experiences of students.

3. Empirical evidence from published studies.
4. Our own classroom observations.

It should be obvious from our earlier discussion of comprehension studies that the acti-
vities one engages in when reading a program—recognizing, hypothesizing, verifying,
abstracting—are different from the tasks normally associated with writing programs.
There is no particular reason to expect these two sets of skills to be equally developed.

Students are probably called upon to read programs less frequently than they will be as
software developers. Not only do they write programs more often than they analyze
them, but also the programs they do write are seldom criticized in detail for style and
documentation. As a result, student programmers develop personal styles that seem
guite natural and correct, but which can be counterproductive when students are con-
fronted with code written by someone else who is equally individualistic.

Empirical studies show that experienced programmers tend to be better program
readers than novices are. Yet the studies also consistently show that reading strat-
egies employed by experienced programmers are diverse, and usually do not correlate
in any obvious way with experience [Crosby90, Littman86, Pennington87]. Experienced pro-
grammers often adopt disastrous reading strategies [Littman86, Pennington87]. Presum-
ably, education can improve such performance, particularly because certain com-
prehension failures are systematic and, although they may not be totally preventable,
perhaps we can arm students with defenses against them. (See [Letovsky86b].)

Our observations of student behavior suggest that students do not particularly like to
read programs, possibly because doing so is difficult, possibly because it seems less cre-
ative or satisfying than writing code, certainly because students fail to grasp its impor-

CMU/SEI-90-EM-3 21

tance. In any case, students often skim program examples in textbooks, rather than
study them. Most students devote even less attention to sample programs distributed
by teachers and often perform quite poorly on examination reading questions. (See
[Deimel85c] for a simple example of this phenomenon.)

5.2. Teaching Strategies

Program reading is a complex, poorly understood cognitive activity. This surely makes
it difficult to teach, but not, we think, impossible. In this section, we suggest what we
believe to be useful teaching strategies for program reading. Although our remarks are
meant to apply mostly to undergraduate education, where we believe program reading
should first be taught, graduate educators and continuing education instructors also
should be able find ideas here that they can use.

It is not our intention to presume that program reading should become the subject of a
particular course. Instead, we believe that program reading should be discussed and
practiced throughout the curriculum. Because reading programs is a skill, like writing
programs, its mastery requires practice over an extended period.

A strategy designed to make students better program readers should have the following
components:

1. Motivation: Students need to know that reading skills are important.

2. Theory: Students can be taught what is known about program com-
prehension and about particular reading strategies and techniques.

3. Demonstration: Teachers should not only lecture about reading tech-
niques, but should also find opportunities to model reading behavior for
their classes.

4. Practice: Students must be given opportunities to exercise program read-
ing skills.

5. Reinforcement: Students must be encouraged, by feedback and grading,
to use and improve their reading skills.

We need not say much about the first two components. Previous chapters have dealt
with the importance of reading skills, our knowledge of program comprehension, and
reading strategies and techniques. This material can be delivered through lectures,
handouts, assigned readings, and offhand remarks in class. It is not necessary to
spend a lot of class time on these topics, but it should be clear that the instructor con-
siders them important. We believe that teaching about comprehension models, if only
informally, is important early on because it helps students formulate what it is they
need to know about a particular program, as well as the kind of knowledge they should
be acquiring about programs generally.

Somehow, hearing about how to do something is less compelling than actually seeing
the thing done. A teacher can demonstrate program reading by handing out a program
to students and reading it himself from overhead slides, demonstrating what he does
by thinking aloud. Since the skill he wants to demonstrate is program reading, not
acting, the program used should be credibly unfamiliar. A variation is to videotape
someone reading a program in this manner and show the videotape in class.

22 CMU/SEI-90-EM-3

Student assignments are a good source of programs with which to demonstrate read-
ing. A program from a newly collected assignment or one from a previous term can,
after the programmer’s name is removed, make excellent reading matter for a class. As
a bonus, the teacher can give valuable feedback to the class concerning stylistic prob-
lems likely to be especially meaningful to the students. This can be an important op-
portunity, as time seldom permits giving such feedback with any regularity. Both
“good” and “bad” programs can serve as examples. This will help students develop
judgement and taste. Teaching assistants or graders can sometimes sort through pro-
grams to find suitable examples.

Another possible source of programs to read is system utilities, such as those available
under UNIX. These programs can make good reading material, in part because stu-
dents seem to like looking behind the veil and demystifying familiar programs usually
regarded as primitives. The program in the Appendix is provided for reading, and the
SEI has other source code available as well. Of course, the choice of reading material
must be geared to the maturity of the students and the topics being covered in the
course.

Reading programs in class offers an interesting alternative to conventional lectures. In
advanced courses, in which students may be assumed to have at least modest program-
ming skills, there is often little reason to “develop” a program on the blackboard to
demonstrate, say, a new algorithm. Instead, the teacher can simply present a program,
and then analyze it as would a professional programmer trying to understand any un-
familiar code. This procedure has the following advantages:

* It can save valuable class time.
* It demonstrates reading skills and reinforces their importance.

* It stresses the analysis, rather than synthesis, of programs (which is often
the point of the lecture anyway).

« Since this can be done with code directly out of the textbook, it sends the
message that “you, too, can make sense out of textbook examples.”

« It relieves the instructor of the need to demonstrate his superiority by
working out the program before the class off the top of his head.

There are many ways to give students practice reading programs, an essential part of
improving their skills. Many instructors regularly distribute their own versions of pro-
gram solutions to their classes after an assignment is due. These versions are usually
intended to serve as models for program writing, rather than as material for reading
practice. In principle, students should read these solutions and learn from them, per-
haps finding better ways of performing operations they found troublesome when they
were writing their own programs. Experience tells us, however, that students often
simply file these programs away somewhere, never to be used, except possibly as
tablecloths for late-night pizza. More incentive for reading is generally required. Here
are possible ways of providing such incentive:

« Have students correct errors in their own programs after they are
returned. Suggest they read the model program for ideas. This tactic ben-
efits some students more than it does others. Students who have no errors
to correct have no special incentive to look at the handout.

CMU/SEI-90-EM-3 23

» Allow students a few days to study the sample program and resubmit their
own, thus allowing them to improve their grades on the assignment. This,
too, benefits students unequally, however.

* Have students add or remove functionality from the model program. They
will already understand the application, and much of their efforts will be
devoted to decoding the details of the model program. In fact, the model
need not even be correct; students can be asked to find and remove a bug.
Of course, if this is done outside of class, there is no way to prevent stu-
dents from copying solutions from one another.

» Have students answer guestions about the sample program. Although gen-
eral questions (e.g., “Write an essay explaining how this program performs
its function.”) can work, more limited and specific questions may be more
effective at focusing students’ attention.

Each of these strategies forces students to approach the program with particular objec-
tives in mind. A related idea is to have students exchange programs and answer spe-
cific questions about them or evaluate the programs against specific criteria. This pro-
vides both reading practice and feedback on programming style and readability.

Reading exercises need not be associated with programming assignments, of course. At
any time, the teacher can hand out a program listing or make available program files.
This should be done in conjunction with a specific exercise or set of questions the stu-
dents are asked to complete. Having students answer questions about programs is an
excellent way to teach them programming techniques and increase their sophistication
in thinking about programs. In fact, it can be a much more effective teaching method
than classroom lecture, as the students become active participants rather than passive
listeners.

Asking students to write essays about programs also provides an opportunity for stu-
dents to sharpen their technical writing skills. (See the SEI curriculum module
Technical Writing for Software Engineers [Levine90] for other suggestions to improve
students’ writing.)

It is not necessary that students write formal essays. Questions requiring brief but
non-obvious answers can be quite effective in giving program reading practice and
teaching whatever it is the instructor wants students to learn about programming. In
fact, students should get experience handling narrow questions before being asked to
deal with complex, open-ended ones. The latter category offers attractive possibilities,
however. Students can be asked to compare alternative programs for the same task, or
to evaluate a proposed—and possibly problematical—modification to a program.

It is possible even to have a little fun with programs distributed to the class. Try con-
ducting a scavenger hunt with a program. Ask students to find as many odd features—
not bugs—in a program as they can. Such features can include peculiar identifiers,
unreachable statements, useless assignment statements, and so forth. Prizes can be
offered to winners who find most oddities. Besides adding interest to the class, this
activity emphasizes that even working programs are not necessarily perfect ones.

24 CMU/SEI-90-EM-3

One of the authors has even offered a monetary bounty on any errors students could
find—even typographical ones—in programs he distributed. This never proved costly,
but perhaps the author was just lucky.

Other activities that might be tried with programs distributed to students include in-
class code reviews and class discussions of programs students have been asked to
study. Of course, code reviews should be part of any team project.

One of the authors regularly uses a type of assignment that combines program reading
and program writing exercises. Students are given files for an incomplete program,
which they are asked to finish. The program may include complete but undocumented
procedures, procedures specified only by comments, and so forth. Students must read
and understand what they have been given in order to complete the code and documen-
tation.

Do not overlook the possibility of giving quizzes or examinations based on programs
students have been asked to read outside of class. Students may be less effective pre-
paring to answer unknown guestions than ones given them in advance, however. On
the other hand, this situation is realistic, as maintenance programmers are often given
time to familiarize themselves with programs they are to maintain, even though they
cannot know what, exactly, they will be called upon to do with them.

Perhaps a more attractive alternative for quizzes and examinations is the idea of using
reading questions that do not depend on code studied in advance. Reading questions
can be used to test reading skills, as well as program writing skills, or at least knowl-
edge of programming techniques. (There is reason to believe there is some correlation
between reading and writing skills. Experienced programmers, for example, seem to
perform better in experiments involving program comprehension. See, for example,
[Crosby90].)

Now we come to the matter of reinforcement. Students are usually willing to spend
time learning a subject or performing a task only if there is some sort of tangible
reward involved, usually in the form of a grade. This is a fact of academic life, and we
can only accept it and use it to our advantage as educators. Students’ grades must
depend in part on reading activities if we are serious about imparting reading skKills.
Most of the activities we have mentioned can be graded in a straightforward way; they
should indeed have grades associated with them. After a time, students will come to
recognize improvement in their reading skills and their understanding of programming
generally, and will, one hopes, engage in reading activities more enthusiastically.

Because becoming a good program reader is partly a matter of learning how to think
about programs, instructors should explain what answers they were looking for in re-
sponse to reading questions. Reviewing exercises in class can be a helpful way to give
feedback, though students sometimes need personal comments as to why their answers
were not correct.

Reinforcement for the idea that reading is important can also come from the use of
programming style guidelines. If reading programs is important, so is writing more
readable programs. Oman and Cook warn against specific guidelines, and recommend

CMU/SEI-90-EM-3 25

teaching language-independent principles [Oman90b]. Teachers have to decide how
much stylistic freedom to allow their students, however. In any case, style guidelines
should be justified in terms of their implications for readability. Students can usually
be convinced of the utility of reasonable, well-thought-out conventions, even if the con-
ventions are not perfect. Upperclass students probably should be given more leeway to
experiment with programming style, though they should be held accountable for their
choices.

We are aware that most of the techniques suggested in this chapter require substantial
work by the instructor. Writing programs for students to read, and devising follow-up
projects, is not a simple matter. Because the benefits can be substantial, however, it
may be worthwhile to establish a department-wide plan to create reusable code and
program repositories where instructors can get (and place) software available for stu-
dent reading exercises.

In the next chapter, we discuss construction of program reading questions. We show
that a great deal of variety is possible and that questions need not be trivial. We also
offer a framework helpful for generating good program reading questions.

5.3. Some Additional Ideas

We want to mention a few ideas related to program reading that may be helpful to
educators, particularly those willing to experiment a bit with their courses.

We mentioned earlier the suggestion by Deimel and Moffat to restructure the intro-
ductory programming course by placing a heavy emphasis on reading. They recom-
mend in [Deimel82] that a four-phase approach be used, in which students:

1. Use programs.

2. Read programs.
3. Modify programs.
4. Write programs.

The first phase introduces students to the kind of products they will later be asked to
create. It helps them to develop ideas about what makes software desirable to users,
independent of any understanding of how much work might be necessary on the part of
developers to achieve an appropriate level of quality. In the second phase, students
begin to learn a programming language. One hopes they develop intuition about how
code should look, so that they make fewer “silly” composition mistakes later on. One
also hopes they begin to see intelligent style conventions and internal comments in a
positive light—as aids to comprehension, rather than as obnoxious requirements. The
third phase lets students try their wings a bit and serves to emphasize the importance
of maintaining software. Finally, students begin writing programs independently.

The Deimel/Moffat approach has a decided software engineering slant to it, and it may
be an attractive strategy to try in undergraduate programs that have a serious commit-
ment to software engineering. No thoroughgoing attempt to implement this approach
—which would require a substantial body of materials—is known to the authors, how-
ever.

26 CMU/SEI-90-EM-3

Although learning one’s first programming language through program reading is some-
thing of an offbeat idea, programmers commonly learn a substantial amount about sec-
ond and third languages by reading programs written in those languages. This idea
suggests a number of educational possibilities, including ways to make language sur-
vey courses more meaningful. Project courses often require students to use a language
with which they are unfamiliar. Providing students, in addition to the usual resources,
with sample programs in that language and meaningful reading questions, such as
those provided in Chapter 6, may ease the transition into use of the new language.

Finally, we suggest that encouraging students to do a serious read of their programs
after they are “finished” can have a salutary effect on their work. Code reviews work,
after all, because someone actually looks at the code, even if it appears to be running
satisfactorily. Carefully and objectively reading one’s program, even without the bene-
fit of other reviewers, often uncovers previously unrecognized flaws. Students sen-
sitized to the importance of program readability can also improve the readability of
their own programs in this way. This is especially true with respect to internal com-
ments. Knowledge of what the reader typically wants and needs to know, along with a
detached assessment of whether or not the code succeeds at communicating that infor-
mation, can lead to programs that are much better documented than they otherwise
would be. Teachers skeptical that students will read their own programs may wish to
provide opportunities for students to review one another’s code.

We are at least a little embarrassed for our profession in suggesting that students
should read what they write. No doubt an English composition teacher would find it
unthinkable that a student should submit a theme without having read it. But pro-
grams seem to be different. Whereas a theme cannot be evaluated except by reading it,
a program can be executed. And students seem disinclined to argue with the success of
a properly running program. We should encourage them to behave otherwise.

CMU/SEI-90-EM-3 27

28

CMU/SEI-90-EM-3

6. Constructing Reading Exercises, with Examples

To teach program reading, it is essential to construct exercises that require students to
answer questions about programs. In this chapter, we offer advice about framing indi-
vidual questions and assembling groups of questions.

Our notion of a “program reading comprehension question” is broad. If a question or
exercise requires understanding source code to answer it, that question fits our defini-
tion. In this sense, for example, a program maintenance exercise is a reading question.
Program reading comprehension questions test reading ability and provide reading
practice, which presumably builds reading skills. Questions must be about something,
however, so that they necessarily also test for other skills and knowledge, a major
reason to like reading questions, all other considerations aside. Rather than compli-
cate matters unduly, we will generally speak of measuring program comprehension, ig-
noring any other objectives a question might achieve.

In Section 6.2, we list a number of questions based on the program in the Appendix.
These questions are intended to be usable as they are, as well as to be suggestive of
others that might be created by teachers, either for the program we have provided or
for for other software.

6.1. Evaluating Program Reading Skills

A major problem of teaching program reading is that of evaluating students’ under-
standing of the material. Program reading skills cannot be measured directly because
the product of program understanding is in students’ heads. As we shall see, however,
a great variety of question types is available to us. Good comprehension questions can
be constructed with just a little effort.

Much of the remainder of this chapter is based on [Deimel84], [Deimel85a], and
[Deimel85c]. The reader should consult these papers for additional details and sugges-
tions.

In general, we are interested in questions that require students to understand a pro-
gram, procedure, or program fragment. The code may be presented on paper, it may be
made available electronically, or it may even be executable. The code may contain
meaningful comments or not. External documentation of various forms may or may
not be available. We do not have space to explore these possibilities in detail. Clearly,
however, certain choices make the same question easier or harder to answer. Infor-
mation that is difficult to extract from raw source code can be very easy to find if pro-
vided directly in comments, for example. (More documentation is not always helpful,
however.) When developing questions, it is important to ask what knowledge and skills
we are trying to test. When evaluating a possible question, it is important to ask what
knowledge and skills students will have to use (and therefore demonstrate) in order to
answer it. These rules of thumb help us select questions and appropriate source
materials.

For this report, we did what instructors often do as we developed our questions for an

CMU/SEI-90-EM-3 29

exercise or examination, namely, made a few arbitrary decisions and took them as
given. Thus, we wrote a well-documented Ada program and developed questions for a
variety of educational objectives based on that program. The program can be provided
on paper or electronically, in whole or in part. Readers can select sets of questions from
those provided to test their students, or they can augment our questions with their
own. If there is reason to do so, they can remove comments, change statements, or
provide external documentation along with the source code.

Reading questions can be multiple-choice or free-response. One or more questions can
be asked about a single passage. It is also possible to ask students to select one of
several passages as the answer to a question. Possible forms of essentially the same
guestion are illustrated in the examples below, which are adopted from [Deimel85a]:

1. What is the apparent purpose of the code below?

TEMP : = A
A = B;
B := TEMP;

TEMP : = A
A = B;
B := TEMP;

a. Set A, B, and TEMP all to the same value.
b. Sort the values of A, B, and TEMP.

c. Exchange the values of A and B.

d. Sort the values of Aand B.

3. Which one of the following fragments correctly and efficiently exchanges
the values of A and B?

a.Tl := A
T2 : = B;
B:= T2
A= TI1;

b.B := A
A = B

c. TEMP : = A
A = B;

B := TEMP;

d Tl := A
T2 := B;
A= T2
B :=T1,

The first question is a free-response question; the second and third are multiple-choice.

30 CMU/SEI-90-EM-3

Multiple-choice questions have the advantage of being easy to grade and to grade objec-
tively. Writing good multiple-choice questions can be time-consuming, however, a fact
that may offset any scoring efficiency gained. Multiple-choice questions seem most de-
sirable if a large pool of them can be developed over time. We have included a few
multiple-choice questions among the exercises. Suggestions for making up such ques-
tions can be found in [Deimel85a], which also discusses the assessment of how successful
particular questions are as evaluation instruments.

Various kinds of free-response questions are possible. Often, only a sentence or phrase
can provide the answer. Essay questions, however, require more extended composition
on the part students and expanded effort on the part of the instructor. Responses to
guestions can be diagrams or other kinds of documents. Cloze procedure tests have
also been used for testing program comprehension. In a cloze procedure question, ele-
ments of the program are deleted (say, every nth statement or every nth operand or
operator), and students are required to supply the deleted elements. A simple example
might be:

1. Complete the fragment below, so that it exchanges the values of A and B:
TEMP : = A

B := TEMP;

One of the most difficult aspects of generating reading comprehension questions is that
of producing adequately diverse questions. The classification scheme of Deimel and
Makoid [Deimel84] is an effective tool with which to deal with this problem. Deimel and
Makoid suggest using a two-dimensional classification of question types. One axis
represents behavioral objectives in the cognitive domain (roughly speaking, the cog-
nitive difficulty of the operations required to produce the correct answer). The other
axis represents the knowledge domain or domains (in Brooks's terminology) about
which one must reason in order to answer the question. A set of questions representing
guestion types well distributed in this two-dimensional matrix should, in principle, be a
broad measure of reading comprehension. A set of questions that requires reasoning
only about individual statements, on the other hand, would likely measure overall
reading comprehension poorly.

The cognitive complexity axis uses Bloom’s taxonomy of behavioral objectives in the
cognitive domain [Bloom56, Bloom71]. This is a classification of types of behavior we
might want to elicit from students. The taxonomy is hierarchical, at least in principle,
in the sense that performance at any level requires the performance skills at all lower
levels. The levels of the hierarchy are as follows (we offer brief explanations in the
domain of our interest):

1. Knowledge: Knowledge-level tasks call for definitions, recognition, etc.
The programmer is asked to respond with established facts about pro-
grams and programming methods, or to give back, more or less verbatim,
what he has read.

2. Comprehension: This level represents simple understanding. The pro-
grammer is asked to summarize or paraphrase what he has read, but is
not required to demonstrate deep understanding of it or its implication.

CMU/SEI-90-EM-3 31

3. Application: This level involves the use of abstractions in particular and
concrete situations. At this level, information becomes functional, not just
theoretical. The programmer might be asked to describe the behavior of a
program.

4. Analysis: This level is concerned with the organization of information
and the relationships among elements. The programmer may be asked
about program components, their organization, and how they work togeth-
er.

5. Synthesis: Synthesis is the putting together of parts to form a whole.
Writing a program or modifying a program are synthesis tasks.

6. Evaluation: The making of quantitative and qualitative judgements, re-
quiring measurement against criteria. The programmer might be asked
to evaluate program efficiency, readability, etc.

Deimel and Makoid in [Deimel84] and [Deimel85c] list several specific types of reading
comprehension questions for each level. We will not reproduce the list here, but we
discuss some of these types in relation to particular questions we provide in the next
section.

6.2. Example Program Reading Questions

We now present concrete examples of program reading questions based on the mul-
titasking Ada program provided in the Appendix. Our objectives are threefold:

1. To show that meaningful and varied reading questions are not difficult to
construct.

2. To illustrate particular kinds of questions to help educators write ques-
tions matched to their own particular educational objectives.

3. To provide actual questions and associated source code that can be as-
sembled by educators into exercises and examinations.

The questions are grouped by Bloom taxonomy level—roughly, in order of difficulty—
though perhaps one should not take this description too literally. This arrangement
facilitates both discussion of question construction and access by instructors, at least to
the extent that they think in terms of abstract educational objectives. The list is not so
long as to preclude a linear search for useful items. The guestions are available on
diskette (an order form is provided as an attachment), so searches of the question set
can be made with a text editor.

We have not provided answers to questions. Although the reason for this has more to
do with the publication schedule than with anything more philosophical, the net effect
is not altogether bad. The lack of answers makes anyone who wants to use the ques-
tions look seriously at the accompanying code. This, in turn, helps one see the answers
students will be asked to discover, appreciate the process students will need to go
through to find them, and gain insight into the program—helpful for writing additional
guestions—and into program reading generally.

32 CMU/SEI-90-EM-3

We should point out that these questions are not field tested. We encourage readers to
create exercises or examinations from them and to share their materials and experi-
ences with others through the Software Engineering Institute.

A few words are in order about the Ada program on which the questions are based.
The program is a well-documented, multitasking program of about 800 statements. It
is distributed among 11 files, whose combined length is about 3800 lines. The main
procedure is pdi , which can be found in file pdi.a. The program searches (possibly very
large) natural numbers in arbitrary bases to find what are called “perfect digital
invariants” (PDIs) and “pluperfect digital invariants” (PPDIs). (The nature of these
numbers is not important. The comments in the main procedure contain background
information and references.) Significant features of the program include:

« A multiple-precision integer arithmetic package, nunbers.

* A user-interaction capability that accepts user requests while searches are
in progress.

< Automatic checkpointing and restarting, a useful feature, as searches can
go on for hours or even weeks.

Most of the work of the depth-first search is carried out by recursive procedure
nunber s. search. do_search. start_search. sel ect _digits. Although the pro-
gram is not obviously implementation-dependent, its use of tasking and text_io may
cause its operation to differ from one system to another when the program is run with-
out modification. Reports of both problems and successes will be appreciated.

In the lists of questions beginning in Section 6.2.1, we have inserted space between
items to allow the reader to make notes about individual questions. Questions at each
level of the taxonomy are in separate sections. Below, we comment on a number of
guestions in order to give the reader a sense of what we have provided, to suggest Kinds
of questions that can be asked, and to show some of the thought process that underlies
guestion construction. Note that the questions are not totally independent of one
another, and use of one question may reasonably preclude use of some other one.

The knowledge-level questions in Section 6.2.1 require the most basic knowledge to an-
swer. The questions shown can hardly be considered reading questions at all, relying
as they do mostly on the knowledge students bring to them. It is difficult at this level
to ask anything except basic Ada questions. Seldom, in fact, do we even want to ask
knowledge-level questions in reading comprehension tests, except possibly in those for
beginning students. Some items are arguably misclassified; question 1 is perhaps a
comprehension-level question. The classification is not so much an end in itself, but a
device for stimulating thought about reading questions, so there is no need to quibble
about fine points. Question 5 involves the sort of knowledge that lends itself nicely to a
multiple-choice question, as it is easy to generate candidate answers that differ slightly
and systematically from one another. Well-prepared students have difficulty with such
a question only to the extent that it takes a few moments to read the question and
recognize where the correct answer is. Students who are less certain in their under-
standing are sometimes misled by distractors (wrong answers).

CMU/SEI-90-EM-3 33

The comprehension-level questions in Section 6.2.2 require more understanding.
Deimel and Makoid call questions like question 1 interpretation questions, in which the
function of a statement or fragment is called for. Question 2 is also an interpretation
type. Notice that it has been written in such a way as to elicit a response in the proper
knowledge domain (in this case, the Ada statement domain). If a response were re-
quired in another domain (that of abstract data structures, for instance) this would
probably not be a comprehension-level question. Care should be taken to cue students
as to the kind of response being sought. In the absence of such a cue, students could
answer this question in a more abstract domain, using abstraction as a cover for vague-
ness about just what is going on here. Questions 3 and 4 are translation questions, in
which information needs to be transformed into another (in this case, graphic) form.
Alternative questions might offer multiple diagrams, out of which students are asked
to choose the most appropriate. Question 4 requires cognitive effort primarily in the
data structures domain; question 3 concerns overall program architecture.

Question 1 of the application-level questions in Section 6.2.3 deals with the knowledge
domains of numbers and operations on them (i.e., the problem space) and that of proce-
dures and functions. Question 1 requires a good deal of thought to answer, as alter-
native designs need to be worked out mentally. Good understanding of Ada visibility
rules and private types is required to get the correct answer by any means other than
guessing or magic. Questions such as this, which require students to relate different
knowledge domains to one another, are probably somewhat more difficult to answer
than comparable questions that do not do so. Question 3, a prediction question, is prob-
ably the sort of item most teachers would think of if asked to write a program reading
guestion. The question can be answered by hand-tracing the code. Experienced pro-
grammers, however, would build an abstract model of the algorithm, from which the
answer could be written down immediately, without step-by-step tracing. (It is a good
idea to try to anticipate all possible methods of finding the answer to a question. It
may be desirable to force or preclude use of a particular strategy.) Questions 5 and 6
are nearly identical, but they solicit different sorts of answers. The difference can be
stated in terms of knowledge domains, but it may be more useful to think of the ques-
tions as asking “what?” and “how?”

Analysis-level questions are usually easy to write; they are often quite difficult to an-
swer. Question 1 in Section 6.2.4 requires a clear understanding of both the problem
domain and the algorithm used by the program. A complete answer to question 2 re-
guires some specialized mathematical knowledge. (See the Deimel and Jones reference
mentioned in the program comments.) Question 3 is a justification question—why did
the programmer do what he did? (Question 6 deals with the same feature of the
program.) Question 5 asks for an explanation; students must relate the problem
domain terms in the question to lower-level program details, in order to give a correct
explanation. Question 8, at least in part, is a location, or “where” question. Question 9
requires students to infer programmer style conventions (not a difficult task in this
case). Questions 10 and 15 deal with Ada tasking. Note that answering most of the
guestions in this section require a good deal of abstract reasoning.

The synthesis-level questions in Section 6.2.5 all require students to construct some-
thing new or add new parts to an existing artifact. Questions 1, 2, and perhaps 11 are

34 CMU/SEI-90-EM-3

particularly appropriate for a software engineering class. Most other questions involve
program modifications. Questions 9 and 10 are unusual, in that they ask that function-
ality be removed from a program—sometimes a trickier job than adding functionality.

Evaluation-level questions are found in Section 6.2.6. Question 2 requires, if not for-
mal methods, at least careful reasoning. Question 3 is a criticism question that makes
students think carefully about some readability issues. Question 6, like question 1 in
Section 6.2.3, requires firm understanding of Ada rules about packages. This question
demands a good deal more clear thinking, however. This question allows for more than
one answer to be correct. Such questions are a bit more complicated to grade than
single-answer questions, but they sometimes seem irresistible.

CMU/SEI-90-EM-3 35

6.2.1. Knowledge-Level Questions

1. Procedure nunmbers. "-". perform subtracti on contains two loops involving
posi ti on. Which one of the following statements is true?

a. There is no declaration for posi ti on.
b. There is no declaration for posi ti on, but there could be.

c. The posi ti on in the first loop designates the same object as that in
the second.

d. The declaration of posi ti on occurs outside nunbers. "-".

2. How many parameters has procedure nunbers. "-". perform subtracti on?
What is the mode of each?

3. The line
SEPARATE (nunbers. search)

occurs several times in the program. What does this line mean?

4. The type dur at i on appears several times in procedure ti mekeeper. -
print_el apsed_tinme. Which statement is true of dur ati on?

a. Type dur at i on is a built-in type of the Ada language, whose com-
plete semantics are described in the language reference manual.

b. Type dur at i on is imported from package cal endar .
c. Type dur at i on is defined implicitly in package t i nekeeper .
d. Type dur at i on is defined in package st andar d.

36 CMU/SEI-90-EM-3

5. What is the meaning of
W TH cal endar;

at the beginning of package t i nekeeper ?

a. Declarations in the body of package cal endar are available within
ti mekeeper without qualification.

b. Declarations in the specification of package cal endar are available
within t i mekeeper without qualification.

c. Declarations in the body of package cal endar are available within
ti mekeeper, provided they are qualified.

d. Declarations in the specification of package cal endar are available
within t i mekeeper, provided they are qualified.

CMU/SEI-90-EM-3

37

6.2.2. Comprehension-Level Questions

1. What is the purpose of the statement
FOR do_search_type’ storage_size USE 1 048 _576;
in the specification of package nunbers. search?

a. It specifies how much memory to allocate.

b. It specifies the address at which part of the object code is to be loaded.
c. It allows certain objects to be used without a qualifying identifier.

d. Using iteration, it performs initialization.

2. As literally as possible, explain what the two statements inside the loop in function
nunbers. convert _to_string do. Be sure to discuss the use of the “’ ” notation.

3. Draw a Booch diagram showing the relations among the main procedure, tasks,
and packages of the program.

4. Draw one or more diagrams to show in detail the structure of sum t abl e in
nunber s. search. do_search. start_search.

5. List all the operators the programmer has overloaded in this program.

38 CMU/SEI-90-EM-3

6.2.3. Application-Level Questions

1. Let package nunber s be used in another program by means of a W TH clause. Sup-
pose it is necessary to multiply two 25-digit, base-19 integers together in a reason-
ably efficient manner, taking advantage of the operations defined in the specifi-
cation of nunber s. Which one of the following is true?

a. The operation can be performed directly by nunbers. "*".

b. The multiplication could be performed if a function were provided to
extract the nth digit of a multiple-precision integer.

c. The required operation is impossible to perform in the absence of the
assignment operator for multiple-precision integers.

d. The operation is easily performed using nunbers. "*" and
nunbers. "+".

2. In function nunber s. "-" (binary minus), indicate which instances of operators are
overloaded by the programmer.

3. Assume nunbers. search. do_search. start_search.initialize tableis
called with parameters 4 and 3. List the numbers (i.e., the multiple-precision in-
teger values) stored in the elements of sum t abl e in the order generated. Be sure
to identify which value is assigned to which element of sum t abl e.

4. Give a valid compilation order for the 11 program files.

CMU/SEI-90-EM-3 39

5. What happens when the user requests that input be taken from the normal input
file (i.e., not the checkpoint file or default input file) but that file does not exist?
State clearly what the program does, as seen by the user.

6. What happens when the user requests that input be taken from the normal input
file (i.e., not the checkpoint file or default input file) but that file does not exist?
State clearly what the program does and explain why it does it.

40 CMU/SEI-90-EM-3

6.2.4. Analysis-Level Questions

1. The program appears to find PDIs in descending order. If it always does so, ex-
plain why this is so. If not, explain why this might seem to be true.

2. What exactly is the significance of the number output when the program displays
“Number of combinations tested”? Is this number helpful to the user in determin-
ing how much of a search has been performed? How difficult would it be to display
a number that told, of the theoretically possible numbers that might be PDIs, how
many of them have definitely been eliminated as PDI candidates?

3. In task number s. sear ch. do_sear ch, two different data structures are used to
hold information about the combination of digits that has been selected. Why?

4. The data type dynami c_st ri ng appears a number of times in package nunbers.
What is it, and how is it used?

5. How does the program avoid testing every positive integer of the desired length for
the property of being a PDI?

CMU/SEI-90-EM-3 41

6. What is the significance of the loop

10.

FOR digit I N nuneral LOOP
wi de_sel ect _vector(digit) := select_vector(digit);
END LOOP;
in procedure nunber s. search. do_search. start_search. -
record_checkpoi nt? That is, why is this loop necessary?

. What change to the program probably should result in a change of the 2 in proce-

dure nunber s. search. do_search. start _search. pri nt _st at e to some other
value?

a. A change in the value of nunber s. maxi num r adi x to 110.

b. A change in the value of nunber s. maxi rum di git | engt h to 1.

c. A change in the value of nunber s. maxi nrum nunber | engt h to 105.
d. A change in the value of nunber s. maxi mum r adi x to 9.

e. None of the above.

. What limitations are there on the PDI searches the program is able to perform?

Where in the code are these limitations established?

. Describe the programmer’s convention with respect to the use of upper- and lower-

case.

Under what circumstances, if any, can more than one task be making progress at
the same time? (Waiting for an entry call is not considered making progress.)

42

CMU/SEI-90-EM-3

11. How does the program know what checkpoint file to read? How does it know what
checkpoint record to read?

12. What are all the circumstances under which function nunber s. " +" returns a
value flagged as erroneous? Can any such circumstances actually occur in this pro-
gram?

13. In procedure nunber s. sear ch. do_sear ch. st art _sear ch, two functions from
package t i mekeeper are renamed. Where, if at all, are these functions actually
used?

14. Explain the operation of procedure nunber s. sear ch. do_search. start_search
in terms of tasks, procedures, and functions.

15. Describe the overall operation of the program in terms of interacting tasks.

16. Explain the method used by the program to restart from a checkpoint, that is, to
reproduce a program state equivalent to the state of the program at the time the
checkpoint was written. The explanation should be general enough to allow the
reader to use the method in another, unrelated program.

CMU/SEI-90-EM-3 43

6.2.5. Synthesis-Level Questions

1. Write a test plan to determine how well the program handles all errors associated
with files input.dat and pdi.ckp.

2. Write a test plan to exercise all exception handlers in the program related to opera-
tions on files input.dat and pdi.ckp.

3. What is the significance of the literal 2 in procedure nunber s. sear ch. -
do_search.start_search. print_state? Replace this literal with an appropri-
ately named and declared constant.

4. Add a feature to the program to allow search parameters to be taken from the de-
fault input file (presumably the keyboard), in addition to the options currently of-
fered.

5. Rewrite function nunber s. " +" with the intention of making it as time-efficient as
possible.

44 CMU/SEI-90-EM-3

6. Presumably, procedure nunber s. search. do_search. start _search. -
sel ect _di gi t s would be faster if implemented without recursion. Propose a de-
sign for such an iterative procedure. Describe in detail any necessary data struc-
tures and their use.

7. Presumably, procedure nunber s. search. do_search. start_search. -
sel ect _di gi t s would be faster if implemented without recursion. Implement a
design that eliminates the use of recursion.

8. Change the program to accommodate different line widths in the default output
file. In the modification, it should be easy to change the line width associated with
the program.

9. In order to increase the efficiency of searches, the program could be modified so as
to disable the user-interaction feature while a search is in progress. Describe ap-
proaches to doing this, assuming the code is to be changed as little as possible.

10. In order to increase the efficiency of searches, completely remove the user-
interaction capability that allows the user to interact with the program while a
search is being carried on. Be sure to change all relevant comments in the code.

11. Briefly summarize the programmer’s indentation conventions in a style guide you
could give to another programmer.

CMU/SEI-90-EM-3 45

6.2.6. Evaluation-Level Questions

1. Although the user’s ability to interact with the program while a search is being

carried on is useful, it presumably creates some execution overhead. Explain the
nature of this overhead and what, if anything, the user can do to manage it.

. Prove (possibly informally) that function nunber s. " <=" performs correctly.

. Explain the programmer’s use (and non-use) of blank lines in the declarations at

the beginning of the specification of package nunber s. Does this use enhance
readability of the declarations? If possible, suggest a rule about the use of blank
lines (or related formatting conventions) that would improve readability of these
declarations.

. In what way is the manner in which the programmer has written Boolean expres-

sions unusual? Why do you think the programmer did what he did? Do you agree
with his reasoning?

. Function nunber s. "-" (binary minus) appears to have been written from

nunbers. " +", or vice versa. Support or refute this possibility. Are the two imple-
mentations equally appropriate for their respective tasks?

46

CMU/SEI-90-EM-3

6. Arguably, package sear ch is not most logically placed as part of package
nunber s. Which of the following statements are true or probably true?

a. Package sear ch is not syntactically necessary.

b. Task sear ch. do_sear ch must be defined within package nunber s
because an Ada task cannot stand alone.

c. Task sear ch. do_sear ch is defined within package nunber s pri-
marily so that identifiers do not have to be qualified.

d. Package sear ch is defined within package nunber s because both are
needed for conducting searches for PDIs and are unlikely to be useful
in any other context.

e. If the package sear ch were defined outside of package nunber s, the
inability to assign multiple-precision integers would complicate the
programming within sear ch.

CMU/SEI-90-EM-3

47

48

CMU/SEI-90-EM-3

Annotated Bibliography

Baecker90
Baecker, Ronald M., and Aaron Marcus. Human Factors and Typography for More
Readable Programs. Reading, Mass.: Addison-Wesley, 1990.

The authors argue that the emphasis on writing, rather than on reading programs has
caused the visual (as opposed to logical) aspects of programs to be ignored. Attempts to
program in a more visual way (so-called “visual programming”) have not been successful,
so the authors were led to examine program visualization. In particular, they have applied
graphics design principles and techniques to the visual display of C programs. The result
is enlightening and striking. Their programs use multiple typefaces and font sizes,
elaborate spacing conventions, shading, color, and the like. Similar treatments could be
given programs written in other languages. The authors justify their design choices and
provide useful background information on program comprehension studies and the ele-
ments of typography.

This book is similar in spirit to the work of Oman and Cook [Oman90a, Oman90b], though it
is more radical in its suggestions. The book is most helpful in suggesting possibilities
likely to be overlooked because we have accepted the technological limitations of the past
as givens. Persistence and familiarity with C are prerequisites to getting through this
substantial book.

Basili82
Basili, Victor R., and Harlan D. Mills. “Understanding and Documenting Programs.”
IEEE Trans. Software Eng. SE-8, 3 (May 1982), 270-283.

Abstract: This paper reports on an experiment in trying to understand an unfamiliar
program of some complexity and to record the authors’ understanding of it. The goal was to
simulate a practicing programmer in a program maintenance environment using the tech-
niques of program design adapted to program understanding and documentation; that is,
given a program, a specification and correctness proof were developed for the program. The
approach points out the value of correctness proof ideas in guiding the discovery process.
Toward this end, a variety of techniques were used: direct cognition for smaller parts, dis-
covering and verifying loop invariants for larger program parts, and functions determined
by additional analysis for larger program parts. An indeterminate bounded variable was
introduced into the program documentation to summarize the effect of several program vari-
ables and simplify the proof of correctness.

The authors take a modest FORTRAN subroutine for finding roots of a function (ZEROIN,
which is fewer than 150 lines long including comments) and reverse engineer it to produce
a specification and correctness proof, documentation sufficient to answer several questions
posed about the code and, presumably, adequate to meet future maintenance needs. This
approach is consistent with the authors’ belief that code and a correctness proof should be
developed from a specification in the first place.

The code is first restructured into one composed of prime programs (see [Linger79]), a proc-
ess requiring the duplication of several lines of code of the unstructured original.
Hypotheses are generated about the resulting components, which are then confirmed by
proving theorems. A table of data references is used to provide preliminary insights into
the semantics of the program. Results of individual theorems are combined until state-
ments can be proved about the entire subroutine.

This paper demonstrates something of a “brute force” approach to determining what a
program does and writing down the findings. This is more important than it sounds; the
goal of generating a correctness proof provides structure to the discovery process of learn-

CMU/SEI-90-EM-3 49

ing what the program does. The strategy this imposes on the reader is certainly used by
programmers, though in limited circumstances and with less formality. The authors are
more prescriptive than descriptive, however, and are not suggesting that programmers
actually follow their procedure.

It is too bad the authors offer only pages and pages of proofs as documentation and do not
suggest what comments they might actually insert into the restructured code. It should be
kept in mind, too, that the techniques demonstrated cannot capture certain pragmatic
information about how the program was intended to be used if this information is not
explicitly represented in the program.

Teachers and students should read this paper. It demonstrates well how we can reason
about code and is likely to provoke heated discussion about how much work is enough
when reading programs.

Bentley86a
Bently, Jon, and Donald E. Knuth. “Literate Programming.” Comm. ACM 29, 5 (May
1986), 364-369. One of Bentley's “Programming Pearls” columns.

A nice description of Knuth’'s VIEB system and his scheme of “literate programming.” The
idea here is to free programming from the arbitrary restrictions of programming languages
and to produce essay-like texts for human consumption. A source file is prepared with
ordinary English text, programming language statements—Knuth's system is Pascal-based
—and imbedded TeX formatting commands. Compilers WEAVE and TANGLE produce, on the
one hand, a human-readable program with commentary and, on the other, a thoroughly
unreadable program for machine use. The system allows the programmer to introduce and
annotate programming language statements in logical order, rather than some order dic-
tated by a language standard. A two-page example program is included as a sidebar, and
it communicates well the spirit of Knuth’s programming method.

No programmer should miss this column. Even if literate programming does not seem to
you the wave of the future, Knuth’s style of exposition is exceedingly thought-provoking.
(See also [Bentley86b].)

Bentley86b
Bently, Jon, Donald E. Knuth, and Douglas Mcllroy. “A Literate Program.” Comm.
ACM 29, 6 (June 1986), 471-483. Another “Programming Pearls” column.
This column is a follow-up to [Bentley86a]. It contains a nearly 8-page literate program by
Knuth, followed by a review (literary criticism, if you will) by Doug Mcllroy. This is not

essential reading, but it is very interesting—for its literate program, programming criti-
cism, and use of a novel data structure.

Bloom56
Bloom, Benjamin S., et al., eds. Taxonomy of Educational Objectives: Handbook I: Cog-
nitive Domain. New York: David McKay, 1956.

Source of Bloom taxonomy of educational objectives in the cognitive domain.
Bloom71

Bloom, Benjamin S., John T. Hastings, and George F. Madaus. Handbook of Formative
and Summative Evaluation of Student Learning. New York: McGraw-Hill, 1971.

Provides additional information on the Bloom taxonomy.

50 CMU/SEI-90-EM-3

Brooks78
Brooks, Ruven. “Using a Behavioral Theory of Program Comprehension in Software
Engineering.” Proc. 3rd Int. Conf. on Software Eng. New York: IEEE, 1978, 196-201.

Abstract: A theory is presented of how a programmer goes about understanding a pro-
gram. The theory is based on a representation of knowledge about programs as a succession
of knowledge domains which bridge between the problem domain and the executing pro-
gram. A hypothesis and verify process is used by programmers to reconstruct these domains
when they seek to understand a program.

The theory is useful in several ways in software engineering: It makes accurate predictions
about the effectiveness of documentation; it can be used to systematically evaluate and cri-
tique other claims about documentation, and it may even be a useful guideline to a pro-
grammer in actually constructing documentation.

In this paper, Brooks sets forth a model of program comprehension and relates it to the
nature of programs and their documentation. His basic ideas reappear in [Brooks82] and in
[Brooks83], where the process of comprehending a program receives greater emphasis. The
author argues strongly against the notion put forth by Kernighan and Plauger that “the
only reliable documentation of a computer program is the code itself” [Kernighan74]. He
offers intuitively appealing arguments for his theory, as well a very brief description of a
supporting experiment.

This paper is easy reading and likely to elicit a few “ahas” from anyone who takes pro-
gramming seriously. The most assailable part of Brooks's theory, his severely top-down
description of how people actually read programs, receives relatively little attention here.

Brooks82

Brooks, Ruven. “A Theoretical Analysis of the Role of Documentation in the Com-
prehension of Computer Programs.” Proc. Conf. on Human Factors in Computer
Systems. New York: ACM, 1982, 125-129.

Brooks describes his theory of program comprehension and uses that theory to draw in-
ferences about documentation. Brooks's most striking conclusion is that it is as important
to document the problem domain as it is to document the program itself. He concludes
that different programming languages require different kinds of documentation, and he
asserts that multiple forms of documentation are beneficial when they convey different
kinds of information.

The description of Brooks's theory is better developed in [Brooks83], although this paper
serves as a brief, readable introduction to it. This paper demonstrates the utility of the
theory, although readers may find themselves wanting more details. Teachers may want
to ask students to build on the inferences presented in the paper.

Brooks83
Brooks, Ruven. “Towards a Theory of the Comprehension of Computer Programs.” Intl.
J. Man-Machine Studies 18, 6 (June 1983), 543-554.

Abstract: A sufficiency theory is presented of the process by which a computer programmer
attempts to comprehend a program. The theory is intended to explain four sources of varia-
tion in behavior on this task: the kind of computation the program performs, the intrinsic
properties of the program text, such as language and documentation, the reason for which
the documentation is needed, and differences among the individuals performing the task.
The starting point for the theory is an analysis of the structure of the knowledge required
when a program is comprehended which views the knowledge as being organized into dis-
tinct domains which bridge between the original problem and the final program. The pro-

CMU/SEI-90-EM-3 51

gram comprehension process is one of reconstructing knowledge about these domains and
the relationship among them. This reconstruction process is theorized to be a top-down,
hypothesis driven one in which an initially vague and general hypothesis is refined and
elaborated based on information extracted from the program text and other documentation.

This extended treatment of Brooks’s ideas about program comprehension is intended to
provide an adequate descriptive model of how programmers understand programs. Accord-
ing to this model, when one understands a program, one has constructed a mental model of
successive knowledge domains bridging from the problem domain to the domain of the
program in execution. Each of these domains consists of objects, properties, relations, and
operations. The succession of domains may include the problem domain, the domain of a
mathematical model of the problem, the algorithm domain, the programming language
domain, etc. One must also understand the relationships that exist between adjacent
domains. The process of reading a program to understand it is one of constructing a model
of this sort or, depending upon one’s reading objectives, constructing a part of one. Accord-
ing to Brooks, this process is largely top-down: the reader generates hypotheses about the
program, which he then attempts to verify from the code and whatever other documen-
tation is available. This verification task is aided by “beacons,” code features characteristic
of recurring structures or operations. Hypotheses are generated hierarchically until
hypotheses can be bound to particular code segments. In this process, hypotheses are
frequently revised or replaced by more credible ones.

The paper concludes with a discussion of factors affecting comprehension, including the
nature of the problem, available documentation, programmer knowledge (both of program-
ming and of the problem domain), reading goals, and reading strategy.

Although not overtly based on empirical studies, Brooks’s model seems both sensible and
serviceable. The model is somewhat dogmatic about programs being read top-down, how-
ever; and although the author acknowledges the bottom-up strategies illustrated in
[Basilig2] and elsewhere, he dismisses them as less powerful and less important.

This is an important, well-written paper. It is particularly concerned with the process of
comprehension, however, and the reader wishing to better understand what it means to
understand a program should look at [Brooks78]. It may be worthwhile to ask students if
they believe people actually read programs as Brooks describes.

Cleveland89
Cleveland, L. “A Program Understanding Support Environment.” IBM Systems J. 28, 2
(1989), 324-344.

Abstract: Software maintenance represents the largest cost element in the life of a software
system, and the process of understanding the software utilizes 50 percent of the time spent
on software maintenance. Thus there is a need for tools to aid the program understanding
task. The tool described in this paper—Program UNderstanding Support environment
(PUNS)—provides the needed environment. Here the program understanding task is sup-
ported with multiple views of the program and a simple strategy for moving between views
and exploring a particular view in depth. PUNS consists of a repository component that
loads and manages a repository of information about the program to be understood and a
user interface component that presents the information in the repository, utilizing graphics
to emphasize the relationships and allowing the user to move among the pieces of infor-
mation quickly and easily.

This paper is a thorough description of the PUNS system developed at IBM. PUNS exists
as a research prototype for IBM System/370 Assembly Language. The PUNS repository
resides on an System/370 30XX computer, while the user interface can reside on a worksta-
tion running Microsoft Windows. PUNS supports the program understanding task by or-
ganizing and presenting the program from many different viewpoints: a call graph for a

52 CMU/SEI-90-EM-3

collection of procedures, a control flow graph for a single procedure, a graph that relates a
file to the procedures that use it, a data flow graph, a use-definition chain for a variable.
The tool uses static analysis techniques to detect low-level relationships that exist within
the program. It consolidates and organizes these relationships and presents them in a
user-friendly environment. Prior to using PUNS, the user is required to structure a data-
base for the particular program to be investigated.

Several extensions are under way to make PUNS a more useful tool. Perhaps the most
important one reported in the paper is called a dynamic information updating facility. As
it stands now, PUNS requires the repository to be established before a user session can
begin. However, there is much to be gained by allowing the user to update information
during the session, since there are relationships that cannot be determined using the static
analysis employed when the repository is set up. Of course, as is discussed in the paper,
allowing for dynamic additions to the repository raises the question of accuracy of infor-
mation retrieved from the system. Attempts to extend PUNS to operate on higher-level
languages are not reported.

PUNS provides the user with a powerful tool to aid in understanding a program. Although
it is limited to assembly language programs, it suggests the kind of tool that may one day
become commonplace for use with high-level languages.

Corbi89
Corbi, T. A. “Program Understanding: Challenge for the 1990’s.” IBM Systems J. 28, 2
(1989), 294-306.

Abstract: In the Program Understanding Project at IBM'’s Research Division, work began
in late 1986 on tools which could help programmers in two key areas: static analysis
(reading the code) and dynamic analysis (running the code). The work is reported in the
companion papers by Cleveland [Cleveland89] and by Pazel [Pazel89] in this issue. The his-
tory and background which motivated and which led to the start of this research on tools to
assist programmers in understanding code is reported here.

The author makes a case for the study and development of program reading skills, both in
the workplace and in the classroom. The paper quotes a large number of authors who, for
the last two decades, have made predictions (some true, others not quite so) on software
development and maintenance. Certainly aging software systems are an integral part of
today’'s (and tomorrow’s) software. Corbi stresses the point that program readers will be
needed in the 1990s, but that, unfortunately, program reading instruction is missing from
most computer science curricula. The paper suggests approaches to maintenance of exist-
ing systems and discusses current tools and their limitations. Finally, the author gives his
own view on software maintenance for the '90s.

This paper is recommended as a reading assignment for upperclass undergraduates. Fur-
thermore, anyone interested in program reading, both as a necessary professional skill and
as an activity within computer-related curricula, will find this paper most helpful. Instruc-
tors can find plenty of motivational statements to share with colleagues and students
alike. The paper contains a substantial bibliography.

Croshy90
Crosby, Martha E., and Jan Stelovsky. “How Do We Read Algorithms? A Case Study.”
Computer 23, 1 (Jan. 1990), 24-35.

The authors report on a study that examined eye movements of programmers reading a
Pascal version of a binary search, as well as their eye movements while studying slides
illustrating the operation of the algorithm. Nineteen low- and high-experience program-
mers, all but one a student, served as subjects. Subjects were given a pretest on the binary

CMU/SEI-90-EM-3 53

search, and cloze tests were used to measure comprehension. Fixation times and number
of fixations were gathered. Most of the results reported are qualitative, however, and the
“experiment” seems not to have addressed any particular hypothesis.

The authors claim support for the “immediacy theory” (that text is processed immediately,
as opposed to being stored in a mental buffer for later cognitive processing), but they report
no evidence for major systematic differences in reading strategy between novices and ex-
perts. High-experience subjects devoted more attention to “meaningful areas” of the code,
however. Reading strategies differed in the relative attention given to comments and code,
in the number of passes over the text, and in the degree to which subjects compared pro-
gram elements to one another rather than reading left-to-right and top-to-bottom.

This paper is most interesting for its graphic analysis of the data to discover patterns in
reading strategies. Although generalizations valid for really experienced programmers
and for realistic blocks of code are not readily apparent, the paper nonetheless suggests
interesting future work.

The paper is easy reading, though it is somewhat vague about details of the experimental
protocol.

Davis84
Davis, John S. “Chunks: A Basis for Complexity Measurement.” Info. Processing & Mgt.
20, 1-2 (1984), 119-127.

Abstract: The state of the art in psychological complexity measurement is currently at the
same stage as weather forecasting was when early Europeans based their predictions on
portents of change. Current direct measures of program characteristics such as operator
and operand counts and control flow paths are not based on convincing indicators of com-
plexity. This paper provides justification for using chunks as a basis for improved com-
plexity measurement, describes approaches to identifying chunks, and proposes a chunk-
based complexity measure.

This paper focuses more on the uses of the abstraction operation of “chunking” as a means
of measuring program complexity than on how to extract chunks from programs. The
chunks Davis is concerned with are at the level of Letovsky's and Soloway's “plans”
[Letovsky86b].

Some of the earliest studies of chunking examined chess players. Experiments show that
master players can remember more than novices can from a quick scan of a chess board if
the chess board represents a meaningful situation. If, however, the pieces are randomly
arranged, non-master players do as well as chess masters. In the programming world,
chunks can be thought of as patterns of statements that accomplish a particular task. For
example, experienced programmers may recognize the familiar pattern of a sorting algo-
rithm. Davis reports that the Raytheon Company found that about half the code in its
inventory of COBOL programs was “redundant,” in the sense that similar code existed to
perform essentially the same function.

The paper proposes two chunk-based complexity measurement models and reports on com-
prehension experiments aimed at validating proposed metrics. Davis points out that pro-
grammers often maintain the same piece of code over a long period of time. Comprehen-
sion experiments that present subjects with unfamiliar programs may therefore be less
relevant to the maintenance task than it might at first appear.

The paper is recommended for students with some level of programming maturity. The
results reported could be the basis of interesting class discussion in an advanced course.

54 CMU/SEI-90-EM-3

Deimel82

Deimel, Lionel E., and David V. Moffat. “A More Analytical Approach to Teaching the
Introductory Programming Course.” Proc. Natl. Educational Computing Conf. 1982.
Columbia, Mo.: University of Missouri, 1982, 114-118.

The authors review approaches to teaching the introductory programming course and con-
clude there is a need for a radically different approach, largely because students fail to
grasp the nature of programs and of program development. Their solution is more
analytical (as opposed to synthetic), consisting of four stages of instruction, in which stu-
dents successively (1) experience programs as a user, (2) read and analyze programs and
algorithms, (3) modify existing programs, and (4) design and implement new programs.
Much of the discussion is concerned with the benefits of program reading.

This is a paper for teachers. The authors acknowledge that the lack of appropriate
materials makes their approach difficult to implement.

Deimel84

Deimel, Lionel E., and Lois Makoid. “Measuring Program Reading Comprehension:
The Search for Methods.” NECC '84: 6th Annual Natl. Educational Computing Conf.
Dayton, Ohio: University of Dayton, 1984, 142-146.

Abstract: Evaluating program reading comprehension is a difficult task faced by both
programming instructors and software psychologists. This paper offers a taxonomy of
methods to measure comprehension and relates these techniques to a theory of comprehen-
sion. The classification should be useful for constructing test questions for both the class-
room and laboratory.

Deimel and Makoid present their classification of program reading comprehension ques-
tions that we have used in this report. The two-dimensional taxonomy is based on the
Bloom taxonomy of educational objectives in the cognitive domain [Bloom56, Bloom71], and
on Ruven Brooks's knowledge domains [Brooks83]. The authors present a list of question
types by Bloom taxonomy level, a list refined in [Deimel85c].

This paper is primarily for teachers, though it might be of interest to students needing to
construct comprehension tests in experimental studies.

Deimel85a

Deimel, Lionel E., and Lois Makoid. “Developing Program Reading Comprehension
Tests for the Computer Science Classroom.” Computers in Education: Proc. IFIP TC 3
4th World Conf. on Computers in Education—WCEE 85, Norfolk, VA, USA, July 29-
August 2, 1985. Amsterdam: North-Holland, 1985, 535-540.

Abstract: A methodology for constructing program reading comprehension tests is dis-
cussed and illustrated. Emphasis is on multiple-choice tests used with realistic reading
passages. Item writing employing a classification of question types developed by the au-
thors and a program comprehension model developed by Ruven Brooks is recommended.

The authors discuss constructing multiple-choice program reading comprehension tests
within the framework described in [Deimel84]. The paper is illustrated with examples and
provides a good deal of practical advice to computer science instructors unfamiliar with
education literature. Most of the examples are taken from a reading passage and com-
prehension test reproduced completely in [Deimel85b].

This paper and the next are addressed to teachers, and may not be of much interest to
students.

CMU/SEI-90-EM-3 55

Deimel85b

Deimel, Lionel E., Lynda Kunz, Lois Makoid, and Jo Perry. “The Effects of Comment
Placement and Reading Times on Program Reading Comprehension.” Proc. 19th Ann.
Conf. on Info. Sciences & Systems. Baltimore: The Johns Hopkins Univ. Dept. of
Electrical Eng. & Comp. Sci., 1985, 595-601.

Abstract: Two experiments are described which compare the use of detailed comments
placed either in line with the high-level language code or offset to the right. Given more
than adequate time in Experiment 1 to read the program and answer comprehension ques-
tions, subjects given the two commenting treatments scored similarly on a comprehension
test. When reading time was substantially reduced in Experiment 2, there were significant
differences in comprehension between the commenting styles, favoring offset commenting.
Further analysis revealed a significant time by comment placement interaction. Possible
explanations and related questions are discussed.

The commenting styles discussed and their possible effects on program readability are
certainly of interest here, but perhaps of greater interest is the construction of the test by
which program comprehension was measured. The test was constructed using the theory
set forth in [Deimel84]. Most of the experimental materials are reproduced in the paper.

Teachers or experimenters needing to construct program comprehension tests will find this
paper quite interesting.

Deimel85c
Deimel, Lionel E. “The Uses of Program Reading.” ACM SIGCSE Bulletin 17, 2 (June
1985), 5-14.

Abstract: It is argued that program reading is an important programmer activity and that
reading skill should be taught in programming courses. Possible teaching methods are
suggested. The uses of program reading in test construction and as part of an overall
teaching strategy is discussed. A classification of reading comprehension testing methods is
provided in an appendix.

This paper argues for the importance of program reading and contends that reading skills
are not necessarily developed in students unless the students receive explicit instruction
designed to develop these skills. The author contends that three components are needed to
teach program reading—lecture, reading exercises, and program writing standards that
are designed with the production of comprehensible programs in mind. He also suggests
that program reading can be used both to teach and to evaluate general programming
skills.

The appendix contains a revised version of the question classification introduced in
[Deimel84]. This list is an improvement over the earlier one, although there are omissions
and, perhaps, some misclassification.

This paper is primarily addressed to teachers.

Goldberg87

Goldberg, Adele. “Programmer as Reader.” IEEE Software 4, 5 (Sept. 1987), 62-70.
Paper originally appeared in Information Processing 86: Proc. IFIP 10th World Comp.
Conf., H. J. Kugler, ed. Amsterdam: North-Holland, 1986, 379-386.

This paper describes how the facilities of the Smalltalk-80 environment support program
reading, a particularly important function in what the author calls an “exploratory
environment,” in which much programming is accomplished by modifying and reusing ex-
isting application and system code. Goldberg describes the Smalltalk-80 system in terms

56 CMU/SEI-90-EM-3

of four levels (user interface, functionality, structure, and language/implementation) and
lists important comprehension questions for each level.

This paper offers an unusual argument for needing to read programs, an argument tied
quite directly to program writing. It suggests ways in which future environments may
provide support for both activities.

Kernighan74
Kernighan, Brian W., and P. J. Plauger. The Elements of Programming Style. New
York: McGraw-Hill, 1974. A second edition was published in 1978.

This influential book tries to do for programming what Strunk and White did for writing.
The authors want people to read programs and thereby learn to program better. This slim
volume is filled with snippets of advice (“Make your programs read from top to bottom.”)
and illustrative code segments from a variety of languages. It is not the ultimate authority
some would make it out to be, but it is a stimulating classic that everyone interested in
serious programming should read. It is somewhat dated, but contains a lot of good advice.

Kernighan81
Kernighan, Brian W., and P. J. Plauger. Software Tools in Pascal. Reading, Mass.:
Addison-Wesley, 1981.

In The Elements of Programming Style, Kernighan and Plauger illustrate their points with
other people’s code. Here, they use their own simple, reusable software tools, written in
Pascal. The book is virtually a whole course on programming technique. There is much
code to read here, but, as is commonly the case in textbooks, most of it is inscrutable
without the surrounding discussion. Thousands of programmers have studied this book on
their own. (This is a revision of an earlier book, Software Tools. The programs in that
book are written in Ratfor, which requires a preprocessor whose output is FORTRAN
code.)

Knuth84
Knuth, Donald E. “Literate Programming.” Computer J. 27, 2 (May 1984), 97-111.

Knuth describes his VIEB system for programming and documentation. Anyone with a deep
interest in the system should read this paper, but the reader who would prefer a brief,
lucid description of this interesting system (and philosophy) should read Jon Bentley’s
piece [Bentley86a] on the subject instead.

Knuth86a
Knuth, Donald E. METAFONT: The Program. Reading, Mass.: Addison-Wesley, 1986.

Source code for Knuth's typeface-generation system, written using VEB. (See [Bentley86al.)

Knuth86b
Knuth, Donald E. TEX: The Program. Reading, Mass.: Addison-Wesley, 1986.

Source code for Knuth's text-processing system, written using WEB. The book runs to
nearly 600 pages. (See [Bentley86a].)

Letovsky86a

Letovsky, Stanley. “Cognitive Processes in Program Comprehension.” In Empirical
Studies of Programmers: Papers Presented at the First Workshop on Empirical Studies
of Programmers, June 5-6, 1986, Washington, D.C., Elliot Soloway and Sitharama

CMU/SEI-90-EM-3 57

lyengar, eds. Norwood, N.J.: Ablex, 1986, 58-79. Reprinted in J. Syst. and Software 7,
4 (Dec. 1987), 325-339.

Abstract: This paper reports on an empirical study of the cognitive processes involved in
program comprehension. Verbal protocols were gathered from professional programmers as
they were engaged in a program understanding task. Based on analysis of these protocols,
several types of interesting cognitive events were identified. These include asking questions
and conjecturing facts about the code. We describe these event types, and use them to derive
a computational model of the programmers’ mental processes.

Letovsky refers to a study involving the videotaping of six professional programmers as
they enhanced a FORTRAN 77 program of about 250 lines. (The same study is also the
basis for [Letovsky86b] and [Littman86].) Subjects were asked to “think aloud” as they worked.
The author describes and analyzes what they said as they labored to understand the pro-
gram to be modified. He presents a cognitive model of program understanding composed of
the programmer’s knowledge base, a mental model, the construction of which is the ulti-
mate goal of program reading, and an assimilation process by which the programmer ac-
tually builds the mental model. Most of the paper is concerned with the assimilation
process and the empirical data justifying the author’s analysis of it.

Although Letovsky's language often differs from that of Brooks, his cognitive model of
program comprehension is basically consistent with and elaborates the model in [Brooks83].
Whereas Brooks emphasizes top-down approaches to reading programs, Letovsky offers
convincing evidence that programmers work both top-down and bottom-up. Much of the
paper is devoted to analysis of the “questions,” “conjectures,” and “inquiries” made by the
programmers while reading the code.

Teacher and student alike can benefit from reading this paper, which suggests, perhaps
better than any other, what a useful model of program comprehension might be. Examples
from the data contribute to one’s understanding of the assimilation (reading) process on
one hand, yet detract from the author’s description of his model on the other. Practical
implications need to be drawn by the reader. Asking students what Letovsky's results
imply (about documentation, for example) should evoke interesting discussion.

The 1987 reprint includes an appendix, “Other Categories of Questions and Conjectures,”
which illustrates programmer thinking not accounted for by the author’s model.

Letovsky86b
Letovsky, Stanley, and Elliot Soloway. “Delocalized Plans and Program
Comprehension.” IEEE Software 3, 3 (May 1986), 41-48.

The authors conclude, based on the same study as [Letovsky86a], that inadequately docu-
mented “delocalized plans” are sometimes responsible for misreading of programs on the
part of maintainers. They analyze comprehension failures by their subjects and suggest
techniques to prevent such misunderstandings when composing programs.

According to this paper, the task of understanding a program is one of uncovering the
intention behind the code. Intentions are described as “goals.” Techniques for realizing
goals in a particular implementation are called “plans.” Plans are a lot like algorithms,
but they may involve non-contiguous elements and may be combined in ways we do not
usually consider for algorithms. Two plans involving loops may be combined into a solu-
tion using a single loop implementing two distinct goals, for example.

The authors have observed that readers of programs tend to infer the goals of code frag-
ments on the basis of locally available information. If the plan for a fragment is
“delocalized,” that is, part of the plan is realized in non-contiguous code, the reader will
often incorrectly perform this inference. The authors suggest various documentation tech-
niques to mitigate reading problems resulting from delocalized plans, most of which re-

58 CMU/SEI-90-EM-3

quire the programmer to be more explicit in comments about his intentions. The paper
also includes a brief section on related work and tools for assisting program reading.

The comprehension difficulties discussed here are not surprising ones, yet the paper comes
as something of a revelation to most of us who have never thought much about those
difficulties or have never thought about them so clearly. This is “must” reading for student
and teacher alike.

Levine90

Levine, Linda, Linda H. Pesante, and Susan B. Dunkle. Technical Writing for Software
Engineers. Curriculum Module SEI-CM-23, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pa., May 1990.

Capsule Description: This module, which is directed specifically to software engineers,
discusses the writing process in the context of software engineering. Its focus is on the basic
problem-solving activities that underlie effective writing, many of which are similar to those
underlying software development. The module draws on related work in a number of disci-
plines, including rhetorical theory, discourse analysis, linguistics, and document design. It
suggests techniques for becoming an effective writer and offers criteria for evaluating writ-
ing.

This curriculum module is a brief presentation of what software engineers should know
about written technical communication. Levine, Pesante, and Dunkle believe that future
software engineers must be taught to write well. They provide substantial advice to in-
structors who may be sympathetic to this idea but who are uncertain of what they can do
to implement it. This is an essential resource for teachers who sincerely want their stu-
dents to write better.

Linger79
Linger, Richard C., Harlan D. Mills, and Bernard I. Witt. Structured Programming:
Theory and Practice. Reading, Mass.: Addison-Wesley, 1979.

An extended apology for and explication of structured programming. The book provides a
good description and adequate examples of the algorithmic conversion of arbitrary pro-
grams into structured ones. Of greatest interest for our purposes is the 66-page Chapter 5,
“Reading Structured Programs.” The entire book is sprinkled with exercises.

Much of Chapter 5 is devoted to an example of how an unstructured, undocumented pro-
gram can be structured and documented bottom-up using stepwise abstraction, the for-
mulation of an abstract description of what a fragment does from the fragment itself. (The
techniques described here provide the basis for what Basili and Mills do, with greater
formality, in [Basili82].) The chapter is notable for its insights into program reading gener-
ally and into the proper nature of comments. According to the authors, well-documented
programs can largely be read top-down, whereas poorly documented programs have to be
read mostly bottom-up. In practice, they suggest, both strategies are usually used, even
for well-documented or totally mysterious programs.

Teachers should read Chapter 5 and whatever other sections they find of interest.
“Reading Structured Programs” is full of practical ideas useful when teaching program
reading. Students who do not need to be convinced of the virtues of structured program-
ming and who do not need to structure spaghetti code are likely to find this book tedious.

Littman86

Littman, David C., Jeannie Pinto, Stanley Letovsky, and Elliot Soloway. “Mental
Models and Software Maintenance.” In Empirical Studies of Programmers: Papers
Presented at the First Workshop on Empirical Studies of Programmers, June 5-6, 1986,

CMU/SEI-90-EM-3 59

Washington, D.C., Elliot Soloway and Sitharama lyengar, eds. Norwood, N.J.. Ablex,
1986, 80-98. Reprinted in J. Syst. and Software 7, 4 (Dec. 1987), 341-355.

Abstract: Understanding how a program is constructed and how it functions are signif-
icant components of the task of maintaining or enhancing a computer program. We have
analyzed videotaped protocols of experienced programmers as they enhanced a personnel
data base program. Our analysis suggests that there are two strategies for program under-
standing, the systematic strategy and the as-needed strategy. The programmer using the
systematic strategy traces data flow through the program in order to understand global
program behavior. The programmer using the as-needed strategy focuses on local program
behavior in order to localize study of the program. Our empirical data show that there is a
strong relationship between using a systematic approach to acquire knowledge about the
program and modifying the program successfully. Programmers who used the systematic
approach to study the program constructed successful modifications; programmers who
used the as-needed approach failed to construct successful modifications. Programmers
who used the systematic strategy gathered knowledge about the causal interactions of the
program’s functional components. Programmers who used the as-needed strategy did not
gather such causal knowledge and therefore failed to detect interactions among components
of the program.

This empirical study reports on 10 professional programmers performing the maintenance
task described in [Letovsky86a]. (Why the two papers report different numbers of subjects is
not explained.) The authors argue that different subjects applied different strategies to
the program reading task. The key to successfully modifying the target program was un-
derstanding interactions among components—presumably a not uncommon situation—and
only subjects who attempted to understand the overall operation of the program were suc-
cessful. Significantly, years of experience was correlated neither with successful modifi-
cation nor systematic strategy. The authors admit that the subjects might have behaved
differently had they been able to test and debug, and they also admit that it is impractical
to try to understand truly large programs completely before attempting modification.
Nonetheless, they speculate that effective program reading prior to changing any code
leads to more efficient maintenance.

This paper is perhaps most useful as a means of sending a warning to students inclined to
begin modifying a program before they understand it.

Lukey81

Lukey, F. J. “Comprehending and Debugging Computer Programs.” In Computer Skills
and the User Interface, M. J. Coombs and J. L. Alty, eds. London: Academic Press,
1981, 201-219.

Lukey reviews and comments on progress in understanding program comprehension and
debugging. The author suggests that there are three methods of studying these
phenomena—the experimental approach, the artificial intelligence approach, and the ob-
servational approach. He focuses on the former two.

This is a good summary of a large body of research, much of which, because of limitations
of space, we have not been able to include here. Although, as a literature review, this
material is somewhat out of date, it provides helpful coverage of early references. Lukey's
review is recommended for teachers and for students with serious interest in studying
program comprehension.

Miara83
Miara, J. Richard, Joyce A. Musselman, Juan A. Navarro, and Ben Shneiderman.
“Program Indentation and Comprehensibility.” Comm. ACM 26, 11 (Nov. 1983),
861-867.

60 CMU/SEI-90-EM-3

Abstract: The consensus in the programming community is that indentation aids program
comprehension, although many studies do not back this up. We tested program comprehen-
sion on a Pascal program. Two styles of indentation were used—blocked and nonblocked—
in addition to four possible levels of indentation (0, 2, 4, 6 spaces). Both experienced and
novice subjects were used. Although blocking style made no difference, the level of inden-
tation had a significant effect on program comprehension. (2-4 spaces had the highest mean
score for program comprehension.) We recommend that a moderate level of indentation be
used to increase program comprehension and user satisfaction.

This paper addresses the impact of indentation and blocking on program comprehension.
By blocked indentation, the authors mean that statements immediately within a begin ...
end pair share a common left margin with those delimiting keywords. In nonblocked
style, the delimited statements are indented further. The authors review previous studies
of indentation, noting that their support for the hypothesis that program indentation aids
program readability and comprehension is, at best, ambiguous. They explain possible
reasons for the discrepancy between their results and those reported by others. The
results of the experiments reported here favor the view that indentation aids comprehen-
sion, but they also show that excessive indentation (6 or more spaces) does not increase the
effect. Interestingly enough, the novices in the study reacted very favorably to indented
code and rejected the nonindented program. Experts, on the other hand, showed no such
prejudice.

This is a good paper on the effect of formatting practices. The experiment was done care-
fully, which makes it especially relevant to those interested in empirical studies. The
practical wisdom to take away from the paper is simple: indent code three spaces to show
its structure. This paper is recommended for both instructors and students.

Moffat84

Moffat, David V. Common Algorithms in Pascal with Programs for Reading.

Englewood Cliffs, N.J.: Prentice-Hall, 1984.

A discussion of basic algorithms illustrated with Pascal examples. The book is distin-
guished by the inclusion of complete, documented programs to accomplish simple tasks. It
makes pleasant bedtime reading for any programmer interested in clear, straightforward
coding and documentation. Reading exercises are included with the complete programs,
and teachers may find these useful. Many questions are too broad and open-ended for
students not accustomed to program reading, however.

Oman90a
Oman, Paul W., and Curtis R. Cook. “The Book Paradigm for Improved Maintenance.”

IEEE Software 7, 1 (Jan. 1990), 39-45.

A condensed version of [Oman90b], but with a few useful ideas and comments not found in
that more scholarly paper. Its brevity makes it attractive for student reading.

Oman90b
Oman, Paul W., and Curtis R. Cook. “Typographic Style is More than Cosmetic.”
Comm. ACM 33, 5 (May 1990), 506-520.

The authors discuss relatively straightforward source code formatting and commenting
techniques to improve program comprehension. They also discuss their experimental
evidence to support their claim that the techniques do, in fact, achieve their objective.

Following a brief review of the literature, Oman and Cook introduce their “book format
paradigm” as a vehicle for displaying source code. They point out that the organization of
books into chapters, sections, and paragraphs, supplemented by prefaces, tables of con-

CMU/SEI-90-EM-3

61

tents, and indexes, is both familiar and serviceable. Similar organization and devices can
be applied to computer programs, and most of the application can be done automatically.

A program formatted according to the book paradigm includes a preface, table of contents,
chapter divisions, pagination, and indices. Most of the added text is in the form of com-
ments, although page headings, which include chapter name and page number, are ap-
parently generated by a listing program. In the table of contents, for example, one might
find the main procedure listed as “Chapter 2,” beginning on page 4. A procedure called on
page 4 would be listed in a module index at the end of the program as being called from the
main procedure; and, if it called other modules, those would also be noted.

The authors refer to features that aid the reader in finding his way around the program as
“macro-typographic” factors. They also discuss “micro-typographic” factors, including the
addition of blank lines and indentation, vertical alignment conventions, use of upper- and
lowercase, use of boldface, addition of “paragraphing” (putting more than one statement on
a line), etc. All these conventions were selected by appeal to “typographic style principles,”
which the authors claim is supported by the empirical evidence.

The paper also reports on four experiments carried out with Pascal and C code formatted
according to the book paradigm or formatted conventionally. Subjects were asked to imple-
ment an enhancement, complete a comprehension test, or complete a call graph for the
code in question. Data were also gathered through think-aloud protocols in one of the
experiments. In each case, subjects using book format code outperformed their fellow sub-
jects using more conventional program listings. Moreover, the authors report that they
adapted easily to the book format, even in the absence of instruction in its use.

Oman and Cook conclude that their book paradigm is natural and useful, though they
recommend that students be taught style principles rather than particular formatting con-
ventions.

This is an important and thought-provoking paper. It is easy to quibble about the specifics
of the book format paradigm, but it is difficult to dismiss the thrust of this work. The
authors’ recommended conventions are by no means radical, and require no substantive
changes in executable statements of the code. Yet, the claimed results are impressive.
This is “must” reading for teachers. Students not specifically interested in empirical
studies should probably read [Oman90a] instead.

Pazel89
Pazel, D. P. “DS-Viewer—An Interactive Graphical Data Structure Presentation
Facility.” IBM Systems J. 28, 2 (1989), 307-323.

Abstract: DS-Viewer is a tool that is the result of a research project in data structure
presentation within a program state. This tool addresses two distinct issues in this area: (1)
to effectively present data structures themselves for a given program state and (2) to present
groups of data structures and their interrelationships as described by their pointer defini-
tions. Graphical presentations were developed to address these issues. For the data struc-
ture presentation, the user is provided a display window for any single data structure in-
stance formatted with its fields and field values. Flexibility in display is provided by allow-
ing the user a choice from the various value formats for each field. For groups of data
structure instances, a graphical drawing space is provided in which pictures of these data
structure instances and their interrelationships are drawn as blocks and arrows. The com-
puter assists the user in drawing such a picture by describing its components, allowing the
user to choose which to draw and to construct as much of the picture as desired.

This paper describes an IBM prototype system that runs on a PC as a Microsoft Windows
application. The tool is designed for use in debugging complex data structures that may
themselves have been corrupted. DS-Viewer allows the user to select interactively the
data structure components and representations to be used for the graphic presentation. It

62 CMU/SEI-90-EM-3

allows the user to select a display of multiple instances of data structures linked by
pointers.

Pennington87

Pennington, Nancy. “Comprehension Strategies in Programming.” In Empirical
Studies of Programmers: Second Workshop, Gary M. Olson, Sylvia Sheppard, and Elliot
Soloway, eds. Norwood, N.J.: Ablex, 1987, 100-113.

Abstract: This report focuses on differences in comprehension strategies between program-
mers who attain high and low levels of program comprehension. Comprehension data and
program summaries are presented for 40 professional programmers who studied and modi-
fied a moderate length program. Illustrations from detailed think-loud protocol analyses
are presented for selected subjects who displayed distinctive comprehension strategies. The
results show that programmers attaining high levels of comprehension tend to think about
both the program world and the domain world to which the program applies while studying
the program. We call this a cross-referencing strategy and contrast it with strategies in
which programmers focus on program objects and events or on domain objects and events,
but not both.

Based on her previous research, Pennington proposes that understanding of overall pro-
gram flow control precedes the more detailed understanding of program functions. In
particular, she suggests that program readers build at least two mental models of the
program they are studying, a “program model” and a “domain model.” The program model
is characterized by an abstract knowledge of the program’s text structures. The domain
model relates objects and functions in the problem domain to source-language entities.

The author carried out an experiment using a minimally documented 200-line FORTRAN
program. Subjects were asked to study the program for 45 minutes in preparation for a
modification task. Some of the subjects were asked to “think aloud” as they examined the
program. After the study period, subjects wrote summaries explaining what the program
did and answered 20 comprehension questions. They were given an additional 30 minutes
to implement the requested change, after which a second summary was written and 20
more comprehension questions answered. Using her analysis of the data, Pennington as-
serts that the comprehension strategies of the subjects can be characterized as “program-
level,” “domain,” or “cross-referencing,” the latter being a strategy that combines features
of the other two. That is, the programmers concentrated either on the program, on the
problem domain, or somehow effectively related the two. Not surprisingly, it was the
cross-referencing readers who performed best.

Whether or not Pennington’s results indicate that program readers create two distinct
mental models in succession, they certainly support the layered abstractions proposed by
Brooks [Brooks83] and Letovsky [Letovsky86a]. This is an insightful paper discussing the
cognitive process of program comprehension. It is equally interesting on methodological
grounds. Pennington’s paper is recommended reading for instructors interested in pro-
gram comprehension. Student benefits from reading the paper, however, may be limited.

Shneiderman79

Shneiderman, Ben, and Richard Mayer. “Syntactic Semantic Interactions in Program-
mer Behavior: A Model and Experimental Results.” Intl. J. Comp. & Info. Sciences 8, 3
(June 1979), 219-238.

Abstract: This paper presents a cognitive framework for describing behaviors involved in
program composition, comprehension, debugging, modification, and the acquisition of new
programming concepts, skills, and knowledge. An information processing model is
presented which includes a long-term store of semantic and syntactic knowledge, and a
working memory in which problem solutions are constructed. New experimental evidence is
presented to support the model of syntactic/semantic interaction.

CMU/SEI-90-EM-3 63

The authors present their cognitive model of programmer behavior, the “syntactic/
semantic” model. They suggest that this model is useful in explaining a variety of be-
haviors, including program reading and program writing. The authors hypothesize that
programmers retain both semantic and syntactic knowledge in long-term memory, and
that they use short-term and working memories in performance of various program-related
tasks. Semantic knowledge and syntactic knowledge are largely independent in this
model. Semantic knowledge is multilayered and substantially language-independent; syn-
tactic knowledge applies to particular programming languages. Shneiderman and Mayer
describe how their model applies to program reading, program writing, debugging, and
learning programming languages. They conclude their paper with brief discussions of ex-
periments that they offer as supporting evidence for their theory.

In program comprehension, according to this theory, the reader “constructs a multileveled
internal semantic structure to represent the program,” a process of encoding from the pro-
gram syntax, which is not memorized directly. The internal structure is built by recog-
nizing the function of program components and fragments as “chunks.” These pieces are
then aggregated until a description of the entire program is available.

This is a paper everyone should read. It presents a typical cognitive model in an approach-
able way, and shows how such models are used and verified. It also offers insight into
programmer behavior. Yet, the structural complexity of the syntactic/semantic model
makes the model seem less useful than it should be, primarily because a totally adequate
model would be very much richer in processing details. The processes reified in this model
are largely implicit in other comprehension models. Shneiderman’s and Mayer’'s mental
model of a program is quite similar to that of Brooks [Brooks78] and Letovsky [Letovsky86al].
Their description of the assimilation process, however, is strictly bottom-up.

Shneiderman80
Shneiderman, Ben. Software Psychology: Human Factors in Computer and Information
Systems. Cambridge, Mass.: Winthrop, 1980.

Software Psychology is a handbook for the application of psychology to computer-related
issues. Shneiderman provides a crash course on methods of psychological research and
proceeds to discuss topics from program reading to team organization and the design of
interactive systems. Although this volume was written a decade ago, it remains an invalu-
able reference on psychological factors related to the computer. The book contains an
extensive bibliography.

Tenny88
Tenny, Ted. “Program Readability: Procedures Versus Comments.” IEEE Software 14,
9 (Sept. 1988), 1271-1279.

Abstract: A 3 x 2 factorial experiment was performed to compare the effects of procedure
format (none, internal, or external) with those of comments (absent or present) on the
readability of a PL/1 program. The readability of six editions of the program, each having
a different combination of these factors, was inferred from the accuracy with which students
could answer questions about the program after reading it. Both extremes in readability
occurred in the program editions having no procedures: without comments the procedureless
program was the least readable and with comments it was the most readable.

An interesting paper that defines readability within the context of maintenance: “a pro-
gram is readable if information needed to maintain it is easily found by reading the
code.” The author formalizes this definition by expressing readability as the average num-
ber of right answers to a series of questions about the program in a given length of time.

The experiment reports that six versions of the same program were used to explore the

64 CMU/SEI-90-EM-3

effects of comments versus the inclusion of procedures. Four editions of the program in-
cluded procedures that performed the major subtasks. Both internal and external (i.e.,
separately compiled) procedure definitions were used. Two of the programs were
procedureless. Commented and uncommented versions of each program version were used
as well. The same set of questions accompanied each of the programs. Scores were tabu-
lated, and ANOVA and F-tests were performed to determine the statistical significance of
the differences between the mean scores.

The reported results are somewhat surprising. The procedureless program with comments
was the least readable, whereas the same program with no comments was the most read-
able. As far as this particular program is concerned, however, the author concludes that
procedures have little effect on readability, whereas comments do seem to have an effect.
Yet, there are compelling reasons to believe that a large program is more readable with the
modules expressed as separate procedures. Thus, “[While] it would be unwise to extrapo-
late these results to all programs, they do indicate that procedures can have little effect on
the readability of programs below a certain size.” The results reported by the author differ
qgualitatively from results obtained by himself on a previous experiment in which the
procedureless program got higher scores than the program with internal procedures, with
or without comments. Possible explanations for these differences are explored.

Aside from the statistical value of this experiment, the author’s questions (which are in-
cluded in the paper) are of much pedagogical value. Instructors are encouraged to read it.
This information may be of limited value to beginning students. Advanced students may
find this paper interesting nevertheless.

Thomas90
Thomas, E. J., and Paul W. Oman. “A Bibliography of Programming Style.” ACM
SIGPLAN Notices 25, 2 (Feb. 1990), 7-16.

A lightly annotated bibliography of nearly 100 references on programming style, broadly
construed. The Thomas and Oman serves as a helpful complement to this bibliography.

Weinberg71
Weinberg, Gerald M. The Psychology of Computer Programming. New York: Van
Nostrand Reinhold, 1971.

Weinberg devotes the first chapter of his well-known book to program reading, remarking
ruefully that “[e]ven programmers do not read programs.” He suggests that there is much
to learn from reading both good and bad programs. Most of the chapter is devoted to
examples of the factors affecting what actually gets coded: limitations of the machine, the
implementation language, and the programmer; historical accidents; and evolving specifi-
cations.

Weiser81
Weiser, Mark. “Program Slicing.” Proc. 5th Int. Conf. on Software Eng. New York:
IEEE, 1981, 439-449.

Abstract: Program slicing is a method used by experienced computer programmers for
abstracting from programs. Starting from a subset of a program’s behavior, slicing reduces
that program to a minimal form which still produces that behavior. The reduced program,
called a “slice”, is an independent program guaranteed to faithfully represent the original
program within the domain of the specified subset of behavior.

Finding a slice is in general unsolvable. A dataflow algorithm is presented for approxi-
mating slices when the behavior subset is specified as the values of a set of variables at a
statement. Experimental evidence is presented that these slices are used by programmers

CMU/SEI-90-EM-3 65

during debugging. Experience with two automatic slicing tools is summarized. New meas-
ures of program complexity are suggested based on the organization of a program’s slices.

Being able to find a program slice simplifies analysis of a program. Even though program
slicing cannot be fully automated, the concept of a slice is a useful one.

Weiser explains slicing by pointing out that, when fixing a bug, an experienced program-
mer usually focuses only on those parts of the program that may obviously have something
to do with the bug in question. Other parts of the program are ignored, effectively having
been deleted in the programmer’s mind from the code being studied. Programmers apply
this same technique when making program improvements or modifications.

The paper considers the slicing of block-structured programs written in a Pascal-like lan-
guage. A slice must have two desirable properties: (1) it must have been obtained from the
original program by statement deletion, and (2) the behavior of the slice must be the same
as that of the original program, as observed through the domain of the specified subset of
behavior. Characterizations of programs in terms of flow graphs are explained, and mean-
ing is given to a slice within those contexts. To make the problem of finding a program’s
slice tractable, Weiser introduces a weaker definition of slice and gives sufficient con-
ditions for statement inclusion. Weiser also introduces a number of slice-based complexity
metrics and discusses their computation.

The paper is quite technical and is recommended only for teachers and advanced students.
It does, however, provide a name for and some analysis of an intuitive, widely used com-
prehension strategy.

Wilde89
Wilde, Norman, and Stephen M. Thebaut. “The Maintenance Assistant. Work in
Progress.” J. Syst. and Software 9, 1 (Jan. 1989), 3-17.

Abstract: The Maintenance Assistant project at the Florida/Purdue Software Engineering
Research Center seeks to develop methodologies and tools in the complex tasks associated
with making changes to software systems. Three broad approaches are currently being
explored: dependency analysis involves capturing the dependencies between different en-
tities in a software system and the development of tools to present and analyze these depend-
encies. Reverse engineering involves the identification or “recovery” of program require-
ments and/or design specifications that can aid in understanding and modifying it.
Program change analysis involves methods for analyzing differences between two versions
of a program in order to understand a change that has been made and detect possible
maintenance-induced errors. A strength of the project has been the very close relationship
with the industrial affiliates of the Software Engineering Research Center. It is hoped that
these organizations will be able to apply the methodologies currently being explored in their
own software projects and in tools to be used by their clients.

This paper surveys a number of program maintenance techniques currently in use in in-
dustry and under prototype development at the Software Engineering Research Center
(SERC). The work described is expected to produce tools that are language-independent,
semi-automatic (with human interaction required), and potentially applicable to programs
of any size.

The author discusses four broad classifications of dependency analysis: data flow depend-
encies, definition dependencies, calling dependencies, and functional dependencies. A
prototype tool is under development to assist the programmer in exploring these depend-
encies. Components of the system all utilize a single program database. The prototype
handles only C programs.

SERC's reverse engineering effort focuses on identifying a useful model of program com-
prehension. The initial goal is to establish a framework for identifying and assessing the

66 CMU/SEI-90-EM-3

effectiveness of strategies and techniques that either aid the comprehension process direct-
ly or partially automate it. In connection with this, SERC has surveyed some 120 program
reading tools currently in use. A summary of their findings is presented in the paper.

Finally, program change analysis to assess the impact of program change is discussed.
Change analysis tools can be used to help programmers identify unexpected side effects, to
guide management in the allocation of resources, or to gauge the system'’s vulnerability to
newly introduced errors. The paper reports on SERC's strategies based on incremental
data flow analysis.

This paper does a good job of surveying existing tools and suggesting the nature of those
that might become available in the future. Recommended reading for teachers and ad-
vanced students.

Wilde90

Wilde, Norman. Understanding Program Dependencies. Curriculum Module SEI-
CM-26, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pa.,
Aug. 1990.

Capsule Description: A key to program understanding is unraveling the interrelation-
ships of program components. This module discusses the different methods and tools that
aid a programmer in answering the questions: “How does this system fit together?” and “If |
change this component, what other components might be affected?”

This curriculum module discusses some of the important relationships that may exist
among elements of a program. Wilde briefly discusses program comprehension and what
is known about it. The bulk of the module treats dependencies among data items, types,
program units, and source files: what they are, how to find them, how they can be
presented to the program reader, and what tools are available to help the reader deal with
them.

The author’s interest is principally in what the maintainer needs to know about how pro-
gram components work together. Even within this context, Wilde's scope is narrow. None-
theless, this module is useful in its making explicit some of what the program reader may
need to learn from a program.

Like all SEI curriculum modules, this report is addressed to teachers, although its concise
overview may appeal to students as well.

CMU/SEI-90-EM-3 67

68

CMU/SEI-90-EM-3

Acknowledgements

A number of people contributed in small or large ways to the production of this report.
Gary Ford’'s commitment to producing educational materials led us to consider a report
on program reading. Special thanks are due Mark Ardis, who said “do it” at a time
when a more ambitious project encountered administrative snags, and who, along with
Nancy Mead, brought the authors together.

Other members of the SEI staff who gave of their time to talk about program reading,
teaching, Ada, and program documentation are: Edward Averill, Judy Bamberger, Len
Bass, Mike Christel, Linda Levine, Jim Tomayko, Rob Veltre, Nelson Weiderman, and
Greg Zelesnik. Similar thanks are due Jon Bentley and Chris Van Wyk of AT&T Bell
Laboratories; David Bustard, SEI visiting scientist from the University of Ulster; Cur-
tis Cook, of Oregon State University; John Cross, of Indiana University of Pennsylva-
nia; David Dobkin, of Princeton University; Rick Green, of Carnegie Mellon University;
Phil Kulton, of Harris Corporation; Paul Oman, of the University of lIdaho; Ruth
Shapiro, SEI resident affiliate from GTE Government Systems Corporation; and Nor-
man Wilde, SEI visiting scientist from the University of West Florida.

Chuck Engle, formerly an SEI resident affiliate from the U.S. Army and now of Florida
Institute of Technology, was a tireless Ada oracle and program critic. Our effort could
not have been successful without SEI librarians Karola Fuchs and Sheila Rosenthal.
Linda Pesante did her usual splendid job of editing, which seems even more impressive
from the vantage point of SEI author than from that of interested bystander. She was
assisted by Marie EIm, who was tenacious in her pursuit of clarity. Angela Wilkerson
typed in some of the abstracts and edits.

We have no doubt missed a few names, for which we apologize.

Our production schedule was short, so virtually all of the above people can credibly
deny responsibility for the final words we have put on paper. We thank them all and
accept full responsibility for any mistakes.

CMU/SEI-90-EM-3 69

70

CMU/SEI-90-EM-3

Appendix: Program Source Code

On the following pages can be found the Ada source code for the program on which the
reading exercises are based. The code is shown in alphabetical order by file name. The
file names are those from the UNIX environment in which the program was developed.
Package specifications and bodies are separated. The file naming convention is as fol-
lows: The main procedure and all package specifications are in file name.a, where the
procedure or package is name. Package and task bodies are in file name_body.a, where
the package or task is name.

Contents of the files appear on the pages shown below:

do_search_type_body.a 72
monitor_keyboard_body.a 93
numbers.a 94
numbers_body.a 121
other_io.a 142
pdi.a 143
process_normal_input_body.a 148
search_body.a 150
synchronize_body.a 151
timekeeper.a 155
timekeeper_body.a 161

CMU/SEI-90-EM-3 71

do_search_type body.a

TASK NAME: nunbers. search. (do_search_type)

ALGORI THM STRATEGY: Wit for call to either entry enter_start_search or

-- entry enter_start_search_fromcheckpoint. |In the former case, a call
-- is nade to procedure start_search to begin the search, after which the

the checkpoint file is read, and procedure start_search is called with
restarting=true.

NOTES: Task normally terminates using a termnate option in sel ect

|
I
I
I
I
- wait is resuned. |If enter_start_search_fromcheckpoint is called,
I
I
I
I
| st at enent .
|

W TH ot her _i o;

W TH sequenti al _i o;
W TH text _i o;

W TH ti nekeeper;

SEPARATE (nunbers. sear ch)
TASK BODY do_search_type IS
-- Range of count of digit positions in nunber
SUBTYPE nunber _of _occurrences_range | S natural
RANGE O .. maxi mnum nunber_| engt h;
-- To hold counts of nunber of occurrences of each digit for checkpoint
TYPE wi de_sel ect _vector_type I'S ARRAY(radi x_digit) OF
nunber _of _occurrences_range;
-- Definition of type to record checkpoi nt
TYPE checkpoi nt _record IS
RECORD

-- Order of checkpointed search
order : natural;

-- Length of PDI sought in checkpointed search
search_l ength . digit_range;

-- Value of snmin at checkpoint (see start_search)
smin © nunber;

-- Nunber of digits not yet determ ned at checkpoi nt
free . nunber _of _occurrences_range;

-- Distribution of digits already selected at checkpoi nt
sel ect _vector : w de_sel ect _vector_type;

-- Next digit to be added to distribution
digit_to_place : radix_digit;

-- Elapsed tine of search prior to checkpoint
el apsed_ti nme : duration;

-- Nunber of conbinations tested prior to checkpoint
conbi nations_tested : natural;

END RECORD,

72 CMU/SEI-90-EM-3

do_search_type body.a

-- Package to perform|/O of checkpoint records
PACKAGE checkpoint _io IS NEWsequential _io (el enent_type =>
checkpoi nt _record);

-- Checkpoint record

checkpoi nt : checkpoi nt _record;

-- Checkpoint file

checkpoint _file . checkpoint _io.file_type;
-- One second

second : CONSTANT duration := 1.0;
-- Tine between checkpoints

checkpoi nt _i nt erval : duration := 3600*second;

-- Flag to tell start_search if search is being restarted froma
-- checkpoint (true if it is)
restarting . Bool ean : = fal se;

-- Uninitialized tine value inported from package ti nekeeper
uninitialized_time : CONSTANT tinmekeeper.tinme : =

ti mekeeper.uninitialized_ tine;
-- Search start time or tine of |ast checkpoint
to0 : tinekeeper.tine := uninitialized_tine;
-- Current tine
tl . tinekeeper.tine;

-- Exception raised for any error related to opening input file
file_open_error . EXCEPTI ON;

CMU/SEI-90-EM-3

73

do_search_type body.a

PROCEDURE NAME: nunbers. search. (do_search_type).start_search

PURPCSE: To perform PDI search.

--| PROGRAMVER: Lionel Deinel DATE WRI TTEN: 6/11/90
--| DATE OF LAST REVI SI ON: 8/9/90 VERSION: 1.2

--| PARAMETERS:

-- radi x (in) radix of PD's sought

-- or der (in) order of PDI's sought

-- search_l ength (in) length of PDs sought

--] I'NPUT: None.

QUTPUT: (To default file) Information about the search before
and after it is conpleted. Procedure select_digits prints out
PDI s found and other intermediate infornation.

ASSUMPTI ONS/ LI M TATI ONS: None. Search may fail due to inadequate
storage all ocation.

ALGORI THM STRATEGY: The real search is carried on by select_digits.
This procedure nerely initializes the search and outputs a sumary
at the end.

ERROR CHECKS/ RESPONSES: None.

NOTES: In a |ength-search_|l ength search, any conbination of

-- search_l ength base-radix digits is a potential PD. To
-- determine if it is actually a PDI, all we need do is raise each
-- digit to the order power and sumthe result. |f the sum

has the sane conbination of digits we began with, then we have found
a PDI. Procedure select_digits builds up a candidate conbination
of digits by selecting the nunber of radix-1 digits in

t he combi nation, then the nunber of radix-2 digits, etc. The

array sel ect_vector keeps track of how many of each digit have been
put in the trial conbination (select_vector(i) is the nunber of
occurrences of digit i). Variable smn holds the m ni nrum possible
val ue of any PDI found using the current conbination of digits,

that is, the sumof the order powers of all the digits so far
placed in the trial digit conbination. Table |ook-up is used

in the conputation of snmin. Array sumtable(i, j) contains the

the sumof i instances of j raised to the order power.

PROCEDURE start_search (radix : INradix_range; order : IN natural;
search_length : INdigit_range) IS

CMU/SEI-90-EM-3

do_search_type body.a

-- Nunber of conplete digit conbinations tested in PD search
conbi nati ons_tested : natural;

-- Default and current number of calls to procedure select_digits

-- between checks of whether the user has requested service fromthe
-- keyboard (see select_digits)

default_max_calls_to_select_digits

: CONSTANT natural := 3000;
current_max_calls_to_select_digits
natural := default_max_calls_to_select_digits;

-- Nunber of calls to select_digits since check was nade for keyboard
-- interrupt
calls_to_select_digits : natural := 0;

-- Valid digits in base-radix
SUBTYPE nunrer al ISradix_digit RANGE O .. radix - 1;

-- Range of nunber of occurrences of any digit possible for this search
SUBTYPE nunber _of _occurrences IS natural RANGE O .. search_| ength;

-- To hold information on digit conbinations
TYPE sel ect _vector_type I'S ARRAY(nuneral) OF nunber_of _occurrences;

-- Characters used to set off related information in output file
di vi der : CONSTANT string := "-------------------- "

-- Current conbination of digits selected for consideration
sel ect _vector . select_vector_type := (nunmeral => 0);

-- Mnimm val ue of PDI possible with conbination of digits derived
-- fromcurrent conbination specified by sel ect_vector
smn : nunber;

-- Table of sums of powers of base-radix digits
sum tabl e . ARRAY(nunber _of _occurrences, nuneral) OF nunber;

-- Current tine obtained from package ti nekeeper
t : tinmekeeper.tine;

-- Inport operators from package ti nekeeper

FUNCTION "-" (x : timekeeper.tine; y : tinekeeper.tinme) RETURN duration
RENAMES ti nmekeeper."-";
FUNCTION "=" (x : timekeeper.time; y : timekeeper.tinme) RETURN Bool ean

RENAMES ti nmekeeper."=";

CMU/SEI-90-EM-3

do_search_type body.a

PROCEDURE NAME:
nunbers. search. (do_search_type).start_search.initialize_table

PURPCSE: To initialize table of sums of powers of base-radix digits.

--| PROGRAMMER: Lionel Deinel DATE WRI TTEN: 6/ 11/ 90
--| DATE OF LAST REVI SI ON: 8/8/90 VERSION: 1.1

--| PARAMETERS:

-- radi x (in) radix of PDI's sought

-- or der (in) order of PD's sought

I NPUT/ QUTPUT: None.

ASSUMPTI ONS/ LI M TATIONS: It is assunmed that initialization of
sum tabl e proceeds without overflow

ALGORI THM STRATEGY: The initialization is straightforward, using
the operations on nultiple-precision integers defined in package
nunbers.

ERROR CHECKS/ RESPONSES: None.

NOTES: See description of sumtable in start_search.

PROCEDURE initialize table (radix : IN radix_range;
order : INnnatural) IS

76

CMU/SEI-90-EM-3

do_search_type body.a

BEG N -- initialize_table

-- Initialize suns (all 0) for any nunber of O digits
FOR count | N nunber _of occurrences LOOP

sum tabl e(count, 0) := make_nunber(radix, 0);

END LOOP;

-- Initialize suns (all 0) for O instances of any other digit

FOR digit IN1 .. radix - 1 LOOP

sumtabl e(0, digit) := make_nunber(radix, 0);

END LOOP;
-- Initialize sum (1) for 1 instance of 1 digit
sum table(l, 1) := nake_nunber(radix, 1);
-- Initialize entries of row 1 of sumtable that have not yet been
-- given val ues
FOR digit IN2 .. radix - 1 LOOP

sumtable(1, digit) := nmake_nunber(radix, digit);

FOR power IN 2 .. order LOOP

sumtable(l, digit) :=digit * sumtable(l, digit);

END LOOP;
END LOOP
-- Initialize entries in remaining rows of sumtable that have not
-- yet been given val ues
FOR count IN 2 .. search_l ength LOOP

FOR digit IN1 .. radix - 1 LOOP

sum tabl e(count, digit) := sumtable(count-1, digit) +
sumtable(1, digit);

END LOOP;

END LOOP

END initialize_table;

CMU/SEI-90-EM-3

77

|
I
I
I
I
I
|
I
I
I
I
|
|
-- sel ect _vector (in) combination of digits in smn
I
I
I
|
I
I
I
I
I
|
I
I
I
I

do_search_type body.a

FUNCTI ON NAME: nunbers. search. (do_search_type).start_search.is_pdi

PURPOSE: To deternmine if a nunber is a PDI.

--| PROGRAMMER: Lionel Deinel DATE WRI TTEN: 6/ 11/ 90
--| DATE OF LAST REVI SI ON: 8/8/90 VERSION: 1.1

--| PARAMETERS:

-- smn (in) sumof powers of digits

speci fied by sel ect _vector
(candi date PDI)

RETURNS: True if smin is a PD, fal se otherw se.
| NPUT/ QUTPUT: None.
ASSUMPTI ONS/ LI M TATI ONS: None.

ALGORI THM STRATEGY: Check if the combination of digits in smn
is the same as in select_vector.

ERROR CHECKS/ RESPONSES: None.

NOTES: None.

FUNCTION is_pdi (smin : IN nunber; select_vector : IN select_vector_type)
RETURN Bool ean IS

-- Base-smin.radix digit fromsnin
digit : nuneral;

-- Variable in which digit conbination of smn is conputed
tally : select_vector_type := (nuneral => 0);

BEG N -- is_pdi

-- Conpute digit conbination in smn
FOR position IN 1 .. snmin.high_order_digit LOOP

digit := smin.digit(position);
tally(digit) :=tally(digit) + 1;
END LOOP;

-- Return true smn has sanme digit conbination as that specified by
-- sel ect_vector
RETURN (tally = sel ect_vector);

END i s_pdi;

78

CMU/SEI-90-EM-3

do_search_type body.a

PROCEDURE NAME:
nunbers. search. (do_search_type).start_search. report _pdi

PURPCOSE: To announce a nunber as a PDI.

--| PROGRAMVER: Lionel Deinel DATE WRI TTEN: 6/ 11/ 90
--| DATE OF LAST REVI SION: 8/8/90 VERSI ON: 1.2

--| PARAMETERS:

-- pdi (in) PD to be output

--| I'NPUT: None.

QUTPUT: (To default file) number, identification, elapsed tine,
and nunber of conbi nations tested.

ASSUMPTI ONS/ LI M TATI ONS: No provision is made for too short an
out put line.

ALGORI THM STRATEGY: Function numbers. convert_to_string is used to
obtain a representation of pdi to be output.

ERROR CHECKS/ RESPONSES: None.

NOTES: ldentifies nunber as PDI or PPDI.

PROCEDURE report_pdi (pdi : IN nunber) IS

CMU/SEI-90-EM-3

79

do_search_type body.a

-- Character representati on of pdi
pdi _string : dynam c_string;

BEGA N -- report_pdi

-- Ontain and output character representation of pdi
pdi _string := convert_to_string(pdi);

text _io.put (pdi_string.char(l .. pdi_string.length));
text _io.new |ine;

-- Qutput its identification
text _io.put ("is an order-");
other __io.natural _io.put (order, width => 1);
I F (order=search_| ength) THEN
text_io.put (" PPD.");
ELSE
text_io.put (", length-");
other _io.natural _io.put (length_of _nunber(pdi), width => 1);
text_io.put (" PD.");
END | F;
text _io.new |ine;

-- Qutput elapsed tine of search
text _io.put ("Found after: ");
ti mekeeper. el apsed_ti ne;

text _io.new |ine;

-- CQutput nunber of conbinations of digits tested

text _io.put ("Nunmber of conbinations tested: ");

other _io.natural _io.put (conbinations_tested, width => 1);
text _io.new line(2);

END report _pdi;

CMU/SEI-90-EM-3

do_search_type body.a

PROCEDURE NAME:
nunbers. search. (do_search_type).start_search.print_state

PURPCSE: To display the current state of the PD search.

PROGRAMVER: Li onel Dei nel DATE WRI TTEN: 6/ 11/ 90
DATE OF LAST REVI SION: 8/9/90 VERSI ON: 1.2
PARAMETERS:

smn (in) current value of snmin (see

start_search)

digit_to_place (in) next digit to be selected for
trial digit comnbination

sel ect _vector (in) current digits in trial
conbi nati on

I NPUT: None.

QUTPUT: (To default file) number, identification, elapsed tine,
and nunber of conbinations tested.

ASSUMPTI ONS/ LI M TATI ONS: No provision is made for too short an
out put line.

ALGORI THM STRATEGY: Function nunbers.convert_to_string is used to
obtain a representation of smn to be output.

ERROR CHECKS/ RESPONSES: None.

NOTES: None.

PROCEDURE print_state (smin : IN nunber; digit_to_place : IN nuneral;

sel ect _vector : IN select_vector_type) IS

CMU/SEI-90-EM-3

81

do_search_type body.a

-- Character representation of smn
smn_string : dynam c_string;

BEG N -- print_state

-- Ootain and output character representation of smn

smn_string := convert_to_string(snin);
text _io.put_line ("smn:");
text_io.put (smin_string.char(l .. smin_string.length));

text _i 0. new_|ine;

-- Qutput next digit to be selected in digit conbination
text _io.put ("digit_to_place: ");

other_io.natural _io.put (digit_to_place, width => 1);
text _io.new |ine;

-- Qutput current digit combination
text _io.put_line ("select_vector:");
FOR position | N REVERSE nuneral LOOP
text_io.put ("(");
ot her _i 0. natural _i o. put (position,
wi dt h => nmaxi numradi x_| engt h);
text_io.put (") =");
ot her _io.natural _io. put (select_vector(position),

width => 2);
text _io.new |ine;
END LOCP;

END print_state;

CMU/SEI-90-EM-3

do_search_type body.a

PROCEDURE NAME:
nunbers. search. (do_search_type).start_search. record_checkpoi nt

--| PURPGCSE: Qutput checkpoint information to default output file and
-- write checkpoint record to checkpoint file.
--| PROGRAMMER: Lionel Deinel DATE WRI TTEN: 6/ 11/ 90
--| DATE OF LAST REVI SI ON: 8/8/90 VERSION: 1.1
--| PARAMETERS:
-- order (in) order of PDI's sought
-- search_l ength (in) length of PDls sought
-- smn (in) current value of snmin (see
-- start_search)
-- free (in) number of digits yet to be
-- sel ected
-- sel ect _vector (in) current digits in trial
-- conbi nati on
pl ace (in) next digit to be selected for
-- trial digit comnbination
--| I'NPUT: None.
--| QUTPUT: (To default file) checkpoint information (tine, elapsed

(To file

ASSUMPTI ONS/
out put i

for any r

NOTES: None.

|
I
I
I
I
I
|
I
I
I
I
|
|
I
I
I
I
|
I
I
I
I
I
|
-- digit_to_
I
I
I
|
|
I
I
I
I
|
|
I
I
I
I
|
I
I
I
I
I
|
I

time, nunber of conbinations tested, smn, digit_to_place,
and sel ect _vector) and, if necessary, an error nmessage to
the effect that the checkpoint file cannot be witten.

"pdi.ckp") checkpoint record.

LI M TATIONS: No provision is made for too short an
ne.

ALGORI THM STRATEGY: Procedure print_state is used to output
smn, digit_to_place, and sel ect_vector.

ERROR CHECKS/ RESPONSES: |f the checkpoint file cannot be witten

eason, an error nessage is output to the default file

and the procedure conti nues.

PROCEDURE record_checkpoint (order : IN natural; search_length : IN

digit_range; smn : IN nunber; free : I N nunber_of_occurrences;
sel ect _vector IN sel ect _vector_type; digit_to_place : IN nuneral) IS
-- Checkpoint record to be witten
checkpoi nt checkpoi nt _record;
-- Current tinme
checkpoint _tine : timekeeper.time;
CMU/SEI-90-EM-3 83

do_search_type body.a

-- Current digits in trial conmbination in format for checkpoint

-- record

wi de_sel ect _vector : wi de_sel ect_vector_type := (radix_digit => 0);

BEG N -- record_checkpoi nt

-- Qutput header and divider
text _io.put_Iline ("CHECKPO NT");
text _io.put_Iline (divider);

-- CQutput tine and el apsed tine

ti mekeeper.tinme_stanp;

text _i 0. new_|ine;

text _io.put ("El apsed tine: ");

ti mekeeper.get_tinme (checkpoint_tinme);

ti mekeeper. el apsed_time (checkpoint_tinmne);
text _i 0. new_|line;

-- Qutput nunber of conbinations tested
text _io.put ("Nunmber of conbinations tested: ");

other _io.natural _i o. put (conbinations_tested, width => 1);

text_i 0. new_|line;

-- Qutput smn, digit_to_place, and sel ect_vector
print_state (smn, digit_to_place, select_vector);

-- Change representation of digit conbination for witing checkpoint

FOR digit IN numeral LOOP

wi de_sel ect _vector(digit) := select_vector(digit);

END LOCP;
BEG N

-- Create and wite checkpoint record

checkpoint := (order, search_length, snin, free,
wi de_sel ect _vector, digit_to_place, checkpoint_tinme - t,

conbi nati ons_t ested);

checkpoint _io.create (file => checkpoint_file, node =>
checkpoint _io.out_file, nane => "pdi.ckp");

checkpoint_io.wite (file => checkpoint_file, item=>
checkpoi nt);

checkpoint _io.close (file => checkpoint _file);

EXCEPTI ON

WHEN OTHERS =>
text _i 0. new_|ine;
text _io.put_line ("Cannot wite to checkpoint file; " &

"checkpoi nt ignored");
text _i 0. new_|ine;

END;
-- Cutput divider
text _io.put_Iline (divider);

text _i 0. new_|ine;

END record_checkpoi nt;

84

CMU/SEI-90-EM-3

do_search_type body.a

PROCEDURE NAME:
nunbers. search. (do_search_type).start_search.select_digits

PURPCSE: To construct conbinations of digits, test themas possible
PDl's, and report PDIs found. Also interacts with task synchronize
to fulfill user requests for information and changes to operating
par aneters.

PROGRAMVER: Li onel Dei nel DATE WRI TTEN: 6/ 11/ 90
DATE OF LAST REVI SION: 8/9/90 VERSION: 3.1
PARAMETERS:

smn (in) current value of smin (see

start_search)

free (in) nunber of digits yet to be
sel ected
sel ect _vector (in) current digits in trial

conbi nati on

digit_to_place (in) next digit to be selected for
trial digit conbination

I NPUT: None.

QUTPUT: (To default file) search status information, including
checkpoint information and PDls found.

(To file "pdi.ckp") checkpoint record (through call to
record checkpoint).

ASSUMPTI ONS/ LI M TATI ONS: No provision is made for too short an
output line. On entry, it is assuned that sel ect_vector
represents a conbination of digits in the range {radix-1 ...
digit_to_place-1}. The sumof these digits, each raised to
the appropriate order power, is assuned to be in smin. On entry,
it is assuned that free digits remain to be sel ected.

ALGORI THM STRATEGY: Select_digits finds all PDIs that can be
constructed fromthe conbination of digits in select_vector
and digits in the range {digit_to_place ... 0}. It does so by
calling itself recursively. Tests are nmade to prune the search
tree by not considering digit conbinati ons whose correspondi ng
smn will have too many or too few digits. Through judicious
use of Boolean restarting, select_digits can reconstruct its
parameters at the tine of a checkpoint, as well as its call
stack. (It does this when it is called with restarting=true.)
At appropriate intervals, checkpoint records are witten
through calls to record_checkpoint. Also at appropriate
intervals, calls are nade to synchroni ze.check_interrupts in
order to process user requests while searches are in progress.

ERROR CHECKS/ RESPONSES: None.

NOTES: None.

CMU/SEI-90-EM-3

85

do_search_type body.a

PROCEDURE sel ect_digits (smn : IN nunber; free : IN
nunber _of _occurrences; select_vector : |IN select_vector_type;
digit_to_place : INn nuneral) IS

-- Flag to return status from synchroni ze.check_interrupts

flag : interrupt_flag_type;
-- New checkpoint interval fromsynchronize.check_interrupts
i nterval : duration;

-- New maxi mrum nunber of calls between checks for user interaction
-- from synchroni ze. check_interrupts
max_cal |l s . natural ;

-- Updated smin to be used in call to select_digits

new_smn : nunber;

-- Updated select_vector to be used in calls to select_digits
new_sel ect _vector : select_vector_type;

BEG N -- select _digits
I F restarting THEN
-- Setting up to restart PDI search from checkpoi nt

IF (digit_to_place /= smin.radi x-1) AND THEN
(select _vector(digit_to_place+l) /=
checkpoi nt. sel ect _vector(digit_to_place+l)) THEN

-- Return if not placing first digit and previous digit
-- has not yet been selected the right nunber of tines
RETURN,

ELSI F (sel ect_vector(digit_to_place) =
checkpoi nt. sel ect _vector(digit_to_place)) AND THEN
(digit_to_place = checkpoint.digit_to_place) THEN

-- Have conpleted setup for restart

-- Clear restarting flag for normal operation
restarting := fal se;

-- Qutput state at beginning of restart

text _io.put_line ("RESTARTING');

text _io.put_Iline (divider);

ti mekeeper.start_tine (t0);

ti mekeeper.time_stanp (t0);

text _i 0. new_|line;

text _io.put ("Elapsed tine before restart: ");

ti mekeeper. print_el apsed_time (checkpoint. el apsed_tine);

text _io.new. |ine;

text _io.put ("Nunmber of conbinations tested before restart: ");

ot her _i o. natural _i 0. put (checkpoint.comnbi nati ons_t ested,
width => 1);

text _i 0. new_|ine;

print_state (smn, digit_to_place, select_vector);

text _io.put_line (divider);

text _i 0. new_|ine;

END | F;

CMU/SEI-90-EM-3

do_search_type body.a

ELSE
-- Beginning or continuing PD search

-- Get current tinme and initialize start tine if at start of
-- search
ti mekeeper.get _tinme (tl1);
IF (t0 = uninitialized_tine) THEN
t0 :=1t1;
END | F;

-- Record checkpoint if time since |ast checkpoint or start of
-- search is greater than specified tine between checkpoints
IF (t1-t0 >= checkpoint _interval) THEN
record_checkpoint (order, search_length, smn, free
sel ect _vector, digit_to_place);
to :=t1;
END | F;

END | F;

-- Tally additional call to select_digits and, if sufficient calls

-- have been nade, handle requests for user interaction, if any
calls_to_select_digits := calls_to_select_digits + 1;

IF (calls_to_select _digits >= current_max_calls_to_select_digits) THEN

-- Reset tally of calls to select_digits
calls_to_select _digits := 0;

-- Handl e any user interaction
synchroni ze. check_interrupts (flag, interval, max_calls);

-- Process returned flag
CASE flag IS

WHEN checkpoi nt _change =>

-- Set new tine between checkpoints
checkpoint _interval := interval
synchroni ze. cl ear _keyboard;

WHEN nmax_cal | s_change =>

-- Set new nunber of calls between checks for user input
-- request

current _max_calls_to_select_digits := nax_calls;
synchroni ze. cl ear _keyboard

VWHEN st atus =>

-- Qutput search status
text _i o.new_|line
text_io.put_line ("STATUS")
text _io.put_line (divider);
text_io.put ("Performng order-");
other_io.natural _io.put (order, width => 1);
I F (order = search_l ength) THEN
text _io.put (" P");
ELSE
text_io.put (", length-");
other_io.natural _io.put (search_length, width => 1);
text_io.put (" ");
END | F;

CMU/SEI-90-EM-3 87

do_search_type body.a

text_io.put ("PD search in base ");

other _io.natural _io.put (radix, width => 1);

text _io.new |ine;

text _io.put ("Checkpoint interval: ");

ot her _i o.duration_io.put (checkpoint_interval,
fore =>6, aft => 1);

text_io.put_line (" seconds");

text_io.put ("Calls to select_digits between polling" &
" of keyboard: ");

other_io.natural _io.put (current_max_calls_to_select_digits,
wdth => 1);

text _i o. new_|ine;

ti mekeeper.time_stanp;

text _i 0. new |ine;

text_io.put ("Elapsed time: ");

ti mekeeper. el apsed_ti ne;

text _i o. new_|ine;

text _io.put ("Nunber of conbinations tested: ");

ot her __io.natural _io.put (conbinations_tested, width => 1);

text _io.new |ine;

print_state (smn, digit_to_place, select_vector);

text_io.put_line (divider);

text _i o. new_|ine;

synchroni ze. cl ear _keyboard;

WHEN conti nue =>

-- Resume search
synchroni ze. cl ear _keyboard;

VWHEN no_i nterrupt =>

-- Resume search (no user interaction request)
nul | ;

END CASE;
END | F;
-- Abandon search if smallest possible PDI has too nmany digits
I F (1 ength_of _nunber(smin) > search_l ength) THEN
RETURN;
END | F;

-- Copy current digit distribution
new_sel ect _vector := sel ect_vector;

IF (digit_to _place = 0) THEN
-- Sel ecting number of instances of digit O

-- Anot her conpl ete conbi nation has been tested
conbi nations_tested : = conbi nations_tested + 1;

-- Must select free instances of digit O
new_sel ect _vector(digit_to_place) := free;

-- Test for PD and report if one has been found

IF is_pdi(snmn, new select_vector) THEN
report_pdi (smin);

END | F;

CMU/SEI-90-EM-3

do_search_type body.a

-- Sel ecting nunber of instances of sone digit other than O
IF (free = 0) THEN

-- No nore digits can be selected; fill out digit conbination
-- with zeroes
FOR digit INREVERSE O .. digit_to_place LOOP
new_sel ect _vector(digit) := O;
END LOOP

-- Test for PDI and report if one has been found

IF is_pdi(smn, new select_vector) THEN
report_pdi (smin);

END | F;

ELSE
-- Additional digits can be selected
I F (1 ength_of _nunber(snmin) = search_l ength) THEN

-- Smal |l est possible PDI is right length; try every
-- possi ble nunber of instances of the next digit to place
FOR count IN REVERSE 0 .. free LOOP
new _sel ect _vector(digit_to_place) := count;
select _digits (smn + sumtable(count, digit_to_place),
free - count, new select_vector, digit_to_place - 1);
END LOOP;

ELSIF (| engt h_of _nunmber (sm n) < search_| ength) THEN

-- Digits selected in conbination so far cannot make a
-- sufficiently long PD; begin trying possible nunbers
-- of instances of the next digit to place, starting with
-- greatest possible nunber and quitting if some nunber of
-- instances cannot possibly lead to finding a PDI
FOR count IN REVERSE 0 .. free LOOP
new smn := snmn + sumtable(count, digit_to_place);
I F (1 ength_of _nunber(new smn + sumtable(free - count,
digit to place -1)) >= search_|length) THEN
new sel ect _vector(digit_to_place) := count;
select _digits (new.snin, free - count,
new_sel ect _vector, digit_to_place -1);

ELSE
EXIT,
END | F;
END LOOP;
END | F;
END | F;
END | F;

END sel ect _digits;

CMU/SEI-90-EM-3

do_search_type body.a

BEG N -- start_search

-- Qutput information about search, including whether it is a PD or
-- PPDI search
text _i 0. new_|ine;
text_io.put ("Begin order-");
other_io.natural _io.put (order, width => 1);
IF (order = search_l ength) THEN
text_io.put (" P");
ELSE
text_io.put (", length-");
ot her_io.natural _io.put (search_length, width => 1);
text_io.put (" ");
END | F;
text_io.put ("PD search in base ");
other_io.natural _io.put (radix, width => 1);
text _i o. new_|ine;

-- Qutput current date and tine
ti mekeeper.start_tine (t);

ti mekeeper.time_stanp (t);
text_io.new_|line (2);

-- Performinitializations for search
initialize_table (radix, order);

smn = make_nunber (radix, 0);

conbi nations_tested := 0;

-- Performactual search
select _digits (snmn, search_length, select_vector, radix - 1);

-- Qutput time of search

text _io.put ("End search after ");
ti mekeeper. el apsed_ti ne;

text _i o. new_|ine;

-- CQutput nunber of conbinations tested

text _io.put ("Nunmber of conbinations tested: ");
other_io.natural _io.put (conbinations_tested, width => 1);
text_io.new_|line (2);

END start_search;

CMU/SEI-90-EM-3

do_search_type body.a

BEG N -- do_search_type

LOOP
SELECT
-- Wit for call to performPDl search
ACCEPT enter_start_search (radix : IN radi x_range;
order : IN natural; search_length : IN digit_range) DO
-- Perform search
start_search (radix, order, search_|length);
END enter_start_search;
OoR

-- Wit for call to restart search from checkpoi nt
ACCEPT enter_start_search_from checkpoi nt;

BEG N

-- Cet search paraneters from checkpoint file
checkpoint _io.open (file => checkpoint_file,

node => checkpoint _io.in_file, name => "pdi.ckp");
checkpoint _io.read (file => checkpoint_file,

item => checkpoint);
checkpoint _io.close (file => checkpoint_file);

EXCEPTI ON

WHEN checkpoi nt _i 0. name_error =>
text _i 0. new_| i ne;
text_io.put_line ("Cannot find file ""pdi.ckp""");
RAI SE fil e_open_error;

VWHEN checkpoi nt _i 0. use_error =>
text _io.new |ine;
text_io.put_line ("Cannot open file
RAI SE fil e_open_error;

pdi . ckp""");

WHEN checkpoi nt _i 0. end_error =>
text _io.new |ine;
text_io.put_line ("End-of-file error reading file" &
" ""pdi.ckp""");
RAI SE fil e_open_error;

WHEN OTHERS =>
text _io.new |ine;
text_io.put_line ("Problemencountered reading file " &
mwan pdi . Ckpll nn) ;
RAI SE fil e_open_error;

END;

-- Perform search

restarting := true;

start _search (checkpoint.sm n.radix, checkpoint.order,
checkpoi nt. search_l engt h);

-- Abort process to allow termination with TERM NATE option of
-- Sel ect
ABORT noni t or _keyboar d;

CMU/SEI-90-EM-3 91

oR
TERM NATE;
END SELECT;
END LOOP;
EXCEPTI ON
VWHEN fil e_open_error =>
text _i 0. new_|ine;

text_io.
text _io.

put _line ("Term nating progrant);
new | i ne;

ABORT noni t or _keyboard;

WHEN constraint_error | numeric_error =>

text_io.
text_io.
text _io.
text _io.
text_io.

new_| i ne;

put _line ("Nunerical error encountered");
new | i ne;

put _line ("Term nating progrant);

new_| i ne;

ABORT noni t or _keyboard;

WHEN st orage_error =>

text _io.
text _io.
text_io.
text_io.
text_io.

new | i ne;

put _|ine("Storage error encountered");
new_| i ne;

put _line ("Term nating progrant);
new_l i ne;

ABORT noni t or _keyboard;

WHEN OTHERS =>

text_io.
text_io.
text_io.
text_io.

text _io.

new_| i ne;

put _li ne("Program error encountered");
new_| i ne;

put_line ("Term nating prograni);
new | i ne;

ABORT noni t or _keyboard;

END do_search_type;

do_search_type body.a

92

CMU/SEI-90-EM-3

monitor_keyboard_body.a

-
--| TASK NAME: nunbers. search. noni t or _keyboard

-- |

--| ALGORI THM STRATEGY: The task waits for a call to entry

- begi n_keyboard_nonitor. It then enters a loop to alternately read a
- line fromthe keyboard and call synchronize. keyboard_i nterrupt.

-

-

-- |

NOTES: None.

W TH text _i o;
SEPARATE (nunber s. sear ch)
TASK BODY noni tor _keyboard IS

-- Position of last character on input line

| ast : natural;
--Input line entered by user
response : string(l .. line_length);

BEGA N -- nonitor_keyboard

-- Wit for signal to begin nmonitoring for user input
ACCEPT begi n_keyboar d_noni t or;

-- Process signals from user
LOoP

-- Read input
text _io.get_line (item=> response, last => last);

-- Signal interrupt
synchroni ze. keyboard_i nterrupt;

END LOCP;

END noni t or _keyboard;

CMU/SEI-90-EM-3

93

numbers.a

PACKACGE NAME: nunbers
PURPCSE: Provide mnultiple-precision integer type and operations.

PROGRAMMVER: Li onel Dei nel DATE WRI TTEN: 5/20/90
DATE OF LAST REVI SION: 8/9/90 VERSION: 2.1

NOTES: The operations provided are extensive, but not exhaustive.
Uninitialized nunbers and nunbers resulting frominvalid operations are
"invalid," that is, they have a special representation recognized as
invalid. Zero is always treated as positive.

PACKAGE nunbers IS

-- Constants related to the representati on of nunbers:

-- Nunber of digits in representation

maxi mum nunber | ength : CONSTANT : = 60;

-- Largest possible radix (nust be at |east 2)

maxi mum r adi x . CONSTANT : = 90;

-- Maxi mum nunber of digits required to represent radix

maxi mum radi x_I ength : CONSTANT : = 2;

-- Maxi mum nunber of digits required to represent single digit of nunber
maxi mumdigit_length : CONSTANT := 2;

-- Type derivatives of above constants:

-- To hold representation of a single digit

SUBTYPE digit_string IS string(l .. maxinmumdigit_|length);

-- Range of val ues possible for radix

SUBTYPE r adi x_r ange I'S natural RANGE 1 .. maxinmumradiXx;

-- Range of digit positions (loworder digit numbered 1)

SUBTYPE di git_range IS natural RANCE 1 .. naxi mum nunber_| ength;
-- Range of allowable values for individual digits

SUBTYPE radi x_di gi t IS natural RANGE O .. (maxi mumradix - 1);

94

CMU/SEI-90-EM-3

numbers.a

-- Declarations to inplement variable-length string representing a nunber:
-- Maxi mum nunber of characters in representation of nunber (allows for
-- sign and base)
maxi mum string_length : CONSTANT := 1 + (maximumdigit_length + 1) *
maxi mum_nunber _l ength + 6 + maxi mum_radi x_| engt h;
-- Range of length of string
SUBTYPE dynami c_string_|l ength_range |S natural
RANGE 0 .. maxi mum string_l ength;
-- Range of character positions within string (leftnost character nunbered 1)
SUBTYPE dynani c_string_index_range |S natural
RANGE 1 .. maxi numstring_| ength;
-- Definition of variable-length string
TYPE dynami c_string IS
RECORD

-- Length of string (possibly 0)
length : dynanic_string_| ength_range;

-- Characters of string
char : string(dynami c_string_i ndex_range);

END RECORD,

-- Variable length string representing "Error"
i nvalid_nunber_string : CONSTANT dynamic_string := (5,

(e, 'r’, ’r’, 70, 'r’, others =>" "));
-- Nunber type
TYPE number I'S LIM TED PRI VATE;

CMU/SEI-90-EM-3 95

numbers.a

FUNCTI ON NAME: nunber s. nake_nunber

PURPCSE: Produce a nultiple-precision integer, given a radix and the
value of a single-digit nunber in that radix.

--| PROGRAMVER: Lionel Deinel DATE WRI TTEN: 5/ 21/ 90

--| DATE OF LAST REVI SION:. 7/25/90 VERSION: 1.1

--| PARAMETERS:

-- radi x (in) base of nunber to be created

RETURNS: Mul tipl e-precision representation of digit in base-radix.
| NPUT/ QUTPUT: None.
ASSUMPTI ONS/ LI M TATI ONS: None.

ERROR CHECKS/ RESPONSES: Invalid nunmber returned if digit out
of range. |If digit is negative, negative nunber is returned.

|
I
I
I
I
I
I
I
I
I
|
- digit (in) value of nunmber (|digit| < radix)
I
I
I
I
|
I
I
I
I
| NOTES: None.
I

FUNCTI ON nmake_nunber (radix : IN radix_range; digit : INinteger)
RETURN nunber ;

CMU/SEI-90-EM-3

numbers.a

FUNCTI ON NAME: numbers."-" (unary mi nus)

PURPCSE: Negate nul tipl e-precision integer.

PROGRAMMVER: Li onel Dei nel DATE WRI TTEN: 5/21/90
DATE OF LAST REVI SION: 8/9/90 VERSI ON: 1.2
PARAMETERS:

a (in) nunber to be negated

RETURNS: Mul tipl e-precision representation of negation of a.
I NPUT/ QUTPUT: None.

ASSUMPTI ONS/ LI M TATI ONS: None.

ERROR CHECKS/ RESPONSES: None.

NOTES: None.

FUNCTION "-" (a : I N nunber) RETURN nunber;

CMU/SEI-90-EM-3

97

numbers.a

FUNCTI ON NAME: nunbers. "abs"

PURPCSE: Take absol ute val ue of nmnultiple-precision integer.

PROGRAMMVER: Li onel Dei nel DATE WRI TTEN: 5/ 25/ 90
DATE OF LAST REVI SI ON: 7/ 25/ 90 VERSION: 1.1
PARAMETERS:

a (i n) nunber

RETURNS: Mul tipl e-precision representation of absolute val ue of a.
I NPUT/ QUTPUT: None.

ASSUMPTI ONS/ LI M TATI ONS: None.

ERROR CHECKS/ RESPONSES: None.

NOTES: None.

FUNCTI ON "abs" (a : I N nunber) RETURN nunber;

98

CMU/SEI-90-EM-3

numbers.a

FUNCTI ON NAME: nunbers. "<="

PURPCSE: Conpare nul tipl e-precision integers.

PROGRAMMVER: Li onel Dei nel DATE WRI TTEN: 5/21/90
DATE OF LAST REVI SI ON: 7/ 25/ 90 VERSION: 1.1
PARAMETERS:

a (i n) nunber

b (in) nunber

RETURNS: Bool ean result of a <= b
| NPUT/ QUTPUT: None.

ASSUMPTI ONS/ LI M TATI ONS: None.

ERROR CHECKS/ RESPONSES: Returns false if either paranmeter is invalid or

if the paraneters are in different bases, irrespective of their actual

val ues.

NOTES: None.

FUNCTION "<=" (a, b : IN nunmber) RETURN Bool ean;

CMU/SEI-90-EM-3

99

numbers.a

FUNCTI ON NAME: nunbers. " ="
PURPCSE: Conpare nul tiple-precision integers for equality.

PROGRAMMVER: Li onel Dei el DATE WRI TTEN: 5/21/90

DATE OF LAST REVI SI ON: 7/ 25/ 90 VERSION: 1.1
PARAMETERS:

a (i n) nunber

b (in) nunber

RETURNS: Bool ean result of a = b.
| NPUT/ QUTPUT: None.

ASSUMPTI ONS/ LI M TATI ONS: None.

ERROR CHECKS/ RESPONSES: Returns false if either paranmeter is invalid or
if the paraneters are in different bases, irrespective of their actual

val ues.

NOTES: None.

FUNCTION "=" (a, b : IN nunber) RETURN Bool ean;

100

CMU/SEI-90-EM-3

numbers.a

FUNCTI ON NAME: nunbers. convert _to_string

PURPCSE: To convert nultiple-precision into a printable string.

PROGRAMMVER: Li onel Dei nel DATE WRI TTEN: 5/21/90
DATE OF LAST REVI SI ON: 7/ 25/ 90 VERSION: 1.1
PARAMETERS:

a (i n) nunber

RETURNS: String representation of the value of parameter a. For
exanpl e, the hexadeci mal nunber -6A4F causes the string
"- 6 10 4 15 Base 16" to be returned.

I NPUT/ QUTPUT: None.

ASSUMPTI ONS/ LI M TATI ONS: None.

ERROR CHECKS/ RESPONSES: Returns "Error" if paraneter a is invalid.

NOTES: None.

FUNCTI ON convert _to_string (a : I N nunber) RETURN dynami c_string;

CMU/SEI-90-EM-3

101

numbers.a

FUNCTI ON NAME: numbers."-" (binary m nus)
PURPCSE: To subtract two multiple-precision integers.

PROGRAMMVER: Li onel Dei el DATE WRI TTEN: 5/21/90

DATE OF LAST REVI SI O\ 7/26/90 VERSION: 2.1
PARANMVETERS:

a (in) first operand

b (in) second operand

RETURNS: Mul tipl e-precision representation of a - b.
I NPUT/ QUTPUT: None.

ASSUMPTI ONS/ LI M TATI ONS: None.

ERROR CHECKS/ RESPONSES: Returns invalid number if either paraneter is
invalid or if the parameters are in different bases, irrespective

of their actual val ues.

NOTES: None.

FUNCTION "-" (a, b : IN nunmber) RETURN nunber;

102

CMU/SEI-90-EM-3

numbers.a

FUNCTI ON NAME: numbers."+" (binary plus)

PURPCSE: To add two mrultiple-precision integers.

--| PROGRAMMER: Lionel Deinel DATE WRI TTEN: 5/21/90
--| DATE OF LAST REVI SI ON: 7/25/90 VERSION: 1.1

--| PARAMETERS:

-- a (in) first operand

-- b (in) second operand

RETURNS: Mul tipl e-precision representation of a + b.

I NPUT/ QUTPUT: None.

ASSUMPTI ONS/ LI M TATI ONS: None.

ERROR CHECKS/ RESPONSES: Returns invalid number if either paraneter is
invalid or if the parameters are in different bases, irrespective

of their actual values. Overflow generates an invalid result.

NOTES: None.

FUNCTION "+" (a, b : IN nunber) RETURN nunber;

CMU/SEI-90-EM-3 103

numbers.a

FUNCTI ON NAME: nunbers."*"

PURPCSE: To nultiply a nultiple-precision integer by a single-digit
nunber in the sane base.

--| PROGRAMMER: Lionel Deinel DATE WRI TTEN: 5/21/90

--| DATE OF LAST REVI SION: 7/25/90 VERSION: 1.1

--| PARAMETERS:

-- f (in) single-digit value in base of a

RETURNS: Mul tipl e-precision representation of f * a.
| NPUT/ QUTPUT: None.
ASSUMPTI ONS/ LI M TATI ONS: None.

ERROR CHECKS/ RESPONSES: Returns invalid nunber if parameter a is invalid,
or if the result generates overflow

|

I

I

I

I

I

I

I

I

I

|

- a (in) nunber

I

I

I

I

|

I

I

I

I

| NOTES: The value of a nay be negative.
I

FUNCTION "*" (f : INradix_digit; a : |IN number) RETURN nunber;

104 CMU/SEI-90-EM-3

numbers.a

FUNCTI ON NAME: numnbers. | engt h_of _nunber

PURPCSE: To determine the nunmber of digits in a multiple-precision

-- i nteger.

--| PROGRAMVER: Lionel Deinel DATE WRI TTEN: 5/21/90
--| DATE OF LAST REVI SION: 7/25/90 VERSION: 1.1

--| PARAMETERS:

-- a (in) nunber

RETURNS: Nunber of digits in representation of paraneter a.

I NPUT/ QUTPUT: None.

ASSUMPTI ONS/ LI M TATI ONS: Paraneter a is assumed to be a valid nunber.
ERROR CHECKS/ RESPONSES: None.

NOTES: If a has the value 0, the function returns 1.

FUNCTI ON | engt h_of _nunber (a : |IN nunber) RETURN digit_range;

CMU/SEI-90-EM-3 105

numbers.a

PACKAGE NAME: nunbers. search

PURPCSE: To perform searches for PPDIs, including interaction with user.

--| DATE OF LAST REVI SION:. 8/8/90 VERSION: 1.1
--| NOTES:. None.

I
I
I
|
--| PROGRAMMVER Lionel Dei nel DATE WRI TTEN: 7/ 25/ 90
I
I
I
I

PACKAGE search | S

-- Messages to be passed from synchronize to do_search to indicate what
-- action has been requested by the user. The nmeanings of the values is

-- as follows:

-- checkpoi nt _change change checkpoi nt frequency

-- max_cal | s_change change frequency of keyboard polling
-- st at us di spl ay search status

-- conti nue resunme search after user interrupt

-- no_i nterrupt resune search after no user interrupt

TYPE interrupt_flag_type IS (checkpoi nt _change, nmax_cal | s_change,
status, continue, no_interrupt);

106 CMU/SEI-90-EM-3

numbers.a

TASK NAME: nunbers. search. process_nor nal _i nput

PURPCSE: To read paraneters for PDI searches frominput file (i.e.,

-- to inplenent "normal" input node) and initiate searches.

--| PROGRAMVER: Lionel Deinel DATE WRI TTEN: 7/ 31/ 90

--| DATE OF LAST REVI SION:. 7/28/90 VERSI ON: 1.2

--| INPUT: (Fromfile "input.dat") triples of integers representing

-- PDI searches to be perforned. "Input.dat" is a nornal text file
-- (i.e., of type text_io.in_file). Integers should be separated by

|

I

I

I

I

I

|

I

I

I

|

| bl anks or new lines. After the third integer of a triple is read,

| the remainder of the line on which it occurs is discarded. The
-- i ntegers represent, respectively, the radix, order, and | ength

| of the PDIs to be searched for. The nunmbers nust be consi stent

| with types (and subtypes) nunbers.radix_range, natural, and

| nunbers. di gi t _range.

I

I

I

I

I

|

I

I

I

I

|

|

QUTPUT: (To default file) error messages.

ASSUMPTI ONS/ LI M TATI ONS: None.

ERROR CHECKS/ RESPONSES: Errors relating to opening and readi ng the
input file are trapped and result in error messages bei ng out put

and the program s being term nated.

NOTES: A triple is not read fromthe input file until previous
triple have resulted in conpl eted searches.

TASK process_nornal _i nput IS

CMU/SEI-90-EM-3 107

numbers.a

-

--| ENTRY NAME: nunbers. search. process_normal _i nput.start

--|

--| PURPOSE: To accept signal to start reading input fromfile

- to direct PDl searches.

--|

--| NOTES: Only one call to this entry should be made. (Entry for
- synchroni zati on purposes only.)

-- |

ENTRY start;

END process_normal _i nput;

108 CMU/SEI-90-EM-3

numbers.a

TASK NAME: nunbers. search. nonit or _keyboard
PURPCSE: To read |ines fromkeyboard and cal |l task synchroni ze.

PROGRAMMVER: Li onel Dei nel DATE WRI TTEN: 7/31/90

DATE OF LAST REVI SION: 8/1/90 VERSION: 1.2

INPUT: (Fromdefault file) lines, whose exact contents is ignored.
After each line is read, a call is nmade to entry
synchroni ze. keyboard_i nterrupt. This task does nothing until
a call is made to entry begi n_keyboard_nonitor.

QUTPUT: None.
ASSUMPTI ONS/ LI M TATI ONS: None.
ERROR CHECKS/ RESPONSES: None.

NOTES: This task nmust be term nated with an abort.

TASK nonitor_keyboard IS

CMU/SEI-90-EM-3

109

numbers.a

ENTRY NAME: nunbers. search. noni t or _keyboar d. begi n_keyboar d_noni t or
PURPCSE: To accept signal to start reading input |ines.

NOTES: Only one call to this entry should be nmade. (Entry for
synchroni zati on purposes only.)

ENTRY begi n_keyboar d_noni t or;

END noni t or _keyboar d;

110 CMU/SEI-90-EM-3

numbers.a

TASK NAME: nunbers. search. synchroni ze

PURPCSE: To coordi nate PDI search and user requests fromthe
keyboar d.

PROGRAMMVER: Li onel Dei nel DATE WRI TTEN: 7/31/90
DATE OF LAST REVI SI ON: 8/1/90 VERSION: 1.2

INPUT: (Fromdefault file) user conmmands and associ at ed
paraneters. Conmands recognized are "r" (resune search), "s
(display status of search), "c" (change checkpoint interval),
"k" (change keyboard polling frequency), and "q" (quit search).
Conmands "c" and "k" require input of some nunber of seconds
(time between checkpoints) and an integer (some nunber of
i nvocations of do_search.start_search. sel ect_digits between
check for user requests).

QUTPUT: (To default file) pronpts for commands and error messages.

ASSUMPTI ONS/ LI M TATIONS: I n order to achieve proper termination,
this task assumes a call is made to entry start_nonitor.

ERROR CHECKS/ RESPONSES: Erroneous user input results in error
nmessages and repronpts.

NOTES: Wen "q" comrand is entered, synchronize aborts tasks

do_search, nonitor_keyboard, and process_nornmal _input. In other
cases, synchronize terminates using a terninate option in select
st at enent .

TASK synchroni ze IS

CMU/SEI-90-EM-3

111

numbers.a

ENTRY NAME: nunbers. search. synchroni ze. start _noni t or

PURPCSE: To accept signal to start executing the function of
package synchroni ze.

NOTES: Only one call to this entry should be nmade. (Entry for
synchroni zation purposes only.) Call results in call to
entry nonitor_keyboard. begi n_keyboard_nonitor to initiate
operation of task nonitor_keyboard.

ENTRY start_nonitor;

112 CMU/SEI-90-EM-3

numbers.a

ENTRY NAME: nunbers. sear ch. synchroni ze. check_interrupts

PURPCSE: To al | ow task synchroni ze to take user comands and
execute themor have the caller (task do_search) execute them
that is, to coordinate user command processing with the PDI

-- sear ch.

--| PARAMETERS:

-- flag (out) nessage flag returned by
-- synchroni ze to indicate user

-- request (see type definition at
-- begi nni ng of package for message
-- interpretations

-- i nterval (out) if command was "c¢" (and

-- therefore flag set to

-- checkpoi nt _change), the new

-- checkpoi nts; otherw se neaningl ess
-- max_cal | s (out) if command was "k" (and

therefore flag set to

max_cal | s_change), the new nunber

of calls of
do_search.start_search.select_digits
between calls to this entry;

ot herwi se neani ngl ess

NOTES: When rendezvous conpl etes, task synchronize waits for
confirmation that the caller has acted on the information
transmtted by paraneter flag. This confirmation is in the
formof a call to entry clear_keyboard. Only when there
was no request for service by the user (that is, when flag is
returned as no_interrupt) is no subsequent call to

|
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
|
- nunmber of seconds between
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
|
| cl ear _keyboard expect ed.
I

ENTRY check_interrupts (flag : OUT interrupt_flag_type;
interval : OUT duration; max_calls : OUT natural);

CMU/SEI-90-EM-3 113

numbers.a

ENTRY NAME: nunbers. sear ch. synchroni ze. keyboar d_i nt er r upt
PURPCSE: To accept signal that user has requested service.

NOTES: Rendezvous does not conplete until service has been
provi ded.

ENTRY keyboard_i nterrupt;

114 CMU/SEI-90-EM-3

numbers.a

-~
--| ENTRY NAME: nunbers. search. synchroni ze. cl ear _keyboard

--|

--| PURPCSE: To receive confirmation that information returned
- fromrendezvous at entry check_interrupts has been

- appropriately acted upon.

-~

-~

-- |

NOTES: See notes for entry check_interrupts.

ENTRY cl ear _keyboard;

END synchroni ze;

CMU/SEI-90-EM-3 115

numbers.a

TASK TYPE NAME: nunbers. search. (do_search_type)

PURPCSE: To actually perform PDl searches. (Only one task is
needed. A task type is required, so the storage all ocated

-- can be set with FOR ... USE.)
--| PROGRAMVER: Lionel Deinel DATE WRI TTEN: 7/ 31/90
--| DATE OF LAST REVI SION: 8/9/90 VERSION: 1.3

INPUT: (Fromfile "pdi.ckp") if entry
enter_start_search_fromcheckpoint is called, task reads
a checkpoint record fromthis file and restarts a search from
the information in the record. The task terninates when the
search conpl et es.

(To file "pdi.ckp") periodic checkpoint records, from which
a search can be restarted. The entire file is rewitten each
time a checkpoint record is witten, so that the file never
contains nore than a single record.

ASSUMPTI ONS/ LI M TATIONS: It is assunmed that either entry
enter_start_search_fromcheckpoint is called once or entry
enter_start_search is called zero or nore tinmes, once for each
search to be perforned.

ERROR CHECKS/ RESPONSES: Problens related to readi ng the checkpoi nt
file result in error nmessages and task term nation.

|
I
I
I
I
I
|
I
I
I
I
|
|
I
|
--| OUTPUT: (To default file) search-rel ated nessages and results.
|
I
I
I
I
I
|
I
I
I
I
|
| NOTES: None.
I

TASK TYPE do_search_type IS

116 CMU/SEI-90-EM-3

numbers.a

ENTRY NAME: nunbers. search. (do_search_type).enter_start_search

PURPCSE: To tell task to performa particular PD search fromthe

-- begi nni ng.

PARANVETERS:

.- radi x (in) base of PDls sought

or der (in) order of PD's sought
search_l ength (in) nunber of digits in PDI's

sought

NOTES: Entry may be called rmultiple tines.

ENTRY enter_start_search (radix : |IN radix_range;
order : IN natural; search_length : IN digit_range);

CMU/SEI-90-EM-3 117

numbers.a

ENTRY NAME: nunbers. search. (do_search_type). -
enter_start_search_from checkpoi nt
record in "pdi.ckp".

-
-~
]
--| PURPCSE: To receive signal to begin PDI search using checkpoint
|
--] NOTES: This entry should be called at npbst once.

-

ENTRY enter_start_search_from checkpoi nt;

END do_search_type;

118 CMU/SEI-90-EM-3

numbers.a

-- Assure adequate storage is available for search; the nunber bel ow
-- is quite machi ne-dependent
FOR do_search_type’ storage_size USE 1_048_576;

-- Actual task to perform PDl searches
do_search : do_search_type;

END sear ch;

CMU/SEI-90-EM-3 119

PRI VATE

-- Flag used to indicate invalid nunber
i nval i d_nunber _fl ag : CONSTANT := 1;
-- Sign val ues
TYPE sign_type I'S (plus, mnus);
-- To represent digits of nunber
TYPE digit_set IS ARRAY(digit_range) OF radix_digit;
-- Representation of nunber
TYPE numnber IS
RECORD

-- Base (initialized to invalid val ue)
r adi x : radi x_range := invalid_nunber_flag;

-- Position of leftnost digit
hi gh_order_digit : digit_range;

-- Sign of nunber

sign 1 sign_type;
-- Digits of numnber
digit : digit_set;
END RECORD;
END nunbers;

numbers.a

120

CMU/SEI-90-EM-3

numbers_body.a

PACKAGE NAME: nunbers

|
|
| NOTES: Operators generally assume nultiple-precision paraneters to be
- canonical--to be valid representations or to be "invalid," that is, to
| carry an invalid flag. Except for zero itself, canonical nunbers have
| no leading 0 digits. Nunbers returned are intended to be canonical
| al so. Zero is always represented as positive.
I

PACKAGE BODY nunbers 1S

-- Range of possible carries or borrows
SUBTYPE carry_or_borrow I S radix_digit RANGE 0 .. 1;

CMU/SEI-90-EM-3 121

numbers_body.a

FUNCTI ON NAME: nunber s. nake_nunber

NOTES: None.

ALGORI THM STRATEGY: Check paraneter validity and set val ues of

resul t.

FUNCTI ON nake_nunber (radix :
RETURN nunber IS

IN radi x_range;

Nunber to be returned
resul t nunber ;

BEGA N -- make_nunber

-- Check if paraneters valid

IF (ABS(digit) < radix) THEN
-- Set sign

IF (digit < 0) THEN

result.sign := mnus;
ELSE

result.sign := plus;
END | F;
-- Set radix, length of nunber,
result.radix := radix;
result.high order _digit := 1;
result.digit(l) := ABS(digit);

ELSE

Fl ag nunber as invalid
result.radi x := invalid_nunber_flag;

END | F;

Ret urn nunber generated
RETURN resul t;

END make_ numnber;

digit

and single digit

I N integer)

122

CMU/SEI-90-EM-3

numbers_body.a

FUNCTI ON NAME:

nunbers."-" (unary m nus)

ASSUMPTI ONS/ LI M TATI ONS: Paraneter a is assuned canoni cal .

--| ALGORI THM STRATEGY: Copy nunber and reverse sign unless paraneter is O.
--| NOTES: None.
FUNCTION "-" (a : I N nunber) RETURN nunber IS
-- Nunber to be returned
resul t nunber ;
BEGN-- "-"
-- Copy nunber
result := a;
IF (a.high_order_digit = 1) AND THEN (a.digit(1l) = 0) THEN
-- Set sign to positive for zero a
result.sign := plus;
ELSE
-- Reverse sign for non-zero a
IF (a.sign = plus) THEN
result.sign := mnus;
ELSE
result.sign := plus;
END | F;
END | F;
-- Return nunmber generated
RETURN resul t;
END "-";
CMU/SEI-90-EM-3 123

numbers_body.a

FUNCTI ON NAME: nunbers. "abs"
ASSUVPTI ONS/ LI M TATI ONS: Paraneter a is assuned canoni cal .
ALGORI THM STRATEGY: Set sign of result to plus.

NOTES: None.

FUNCTI ON "abs" (a : I N nunber) RETURN nunber IS

-- Nunber to be returned
result : nunber;

BEG N -- "abs"
-- Make sign of result positive
result := a;
result.sign := plus;

-- Return nunber generated
RETURN resul t;

END "abs";

124 CMU/SEI-90-EM-3

numbers_body.a

FUNCTI ON NAME: nunbers. "<="
ASSUMPTI ONS/ LI M TATI ONS: Paraneters are assuned canoni cal .

ALGORI THM STRATEGY: Determine signs of paraneters; result is
imediately determined if they differ. Oherwise, the result is
determined fromthe nunber with the nost nunber of digits. |If
signs and lengths are the same, procedure distinguish is used to
determine the result.

NOTES: None.

FUNCTION "<=" (a, b : IN nunmber) RETURN Bool ean IS

CMU/SEI-90-EM-3

125

numbers_body.a

FUNCTI ON NAME: nunbers. " <=".di sti ngui sh

PURPCSE: To determine if |x| <= |y]|.

PROGRAMVER: Li onel Dei nel DATE WRI TTEN: 5/ 21/ 90
DATE OF LAST REVI SI ON: 8/9/90 VERSION: 1.2
PARAVETERS:

X (in) nunber

y (in) nunber

I NPUT/ QUTPUT: None.

ASSUMPTI ONS/ LI M TATI ONS: The paraneters are assumed to have the same
radi x and the sanme nunber of digits.

ALGORI THM STRATEGY: Corresponding digits of the paranmeters are
conpared fromleft to right until a difference between themis
found or it is determned that there is no difference between them

ERROR CHECKS/ RESPONSES: None.

NOTES: The signs of the paraneters are ignored.

FUNCTI ON di stinguish (x, y : IN nunber) RETURN Boolean IS

126

CMU/SEI-90-EM-3

numbers_body.a

-- Difference found in corresponding digits

di stingui shed : Boolean := fal se;
-- Value of x found to be or assunmed to be less than that of y
X_|l ess . Bool ean : = fal se;

BEGA N -- distinguish
-- Examine corresponding digits until a difference is found or
-- all digits are exam ned
FOR position IN REVERSE 1 .. x.high_order_digit LOOP
IF (x.digit(position) > y.digit(position)) THEN
-- Smaller digit found iny
di stinguished : = true;
x_less := fal se;
ELSIF (x.digit(position) < y.digit(position)) THEN

-- Smaller digit found in x

di stinguished : = true;
x_less :=true;
END | F;

-- Terminate |oop early if unequal corresponding digits found

EXI T WHEN di sti ngui shed;
END LOOP;
-- Return true if smaller digit found in x or all digits
-- are the sane
RETURN (x_l ess OR ELSE (NOT di stingui shed));

END di sti ngui sh;

CMU/SEI-90-EM-3

127

numbers_body.a

BEG N -- "<="
IF (a.radix /= b.radix) OR ELSE
(a.radix = invalid_nunber_flag) OR ELSE
(b.radix = invalid_nunber_flag) THEN

-- Conparison invalid
RETURN f al se;

ELSE
IF (a.sign /= b.sign) THEN

-- Signs differ; true if a negative
RETURN (a.sign = mnus);

ELSE
If (a.sign = plus) THEN

--Both signs positive; true if a <=b

IF (a.high_order_digit < b.high_order_digit) THEN
RETURN true;

ELSIF (b. high_order_digit < a.high_order_digit) THEN
RETURN f al se;

ELSE
RETURN di sti ngui sh(a, b);

END | F;

ELSE

--Both signs negative; true if |a|l <= |Db|

I F (b.high_order_digit < a.high_order_digit) THEN
RETURN true;

ELSIF (a. high_order_digit < b.high_order_digit) THEN
RETURN f al se;

ELSE
RETURN di sti ngui sh(b, a);
END | F;
END | F;
END | F;
END | F;
END "<=";

128 CMU/SEI-90-EM-3

numbers_body.a

FUNCTI ON NAME

nunbers. "=

ASSUMPTI ONS/ LI M TATI ONS: Paraneters are assuned canoni cal .

|
I
I
I
| ALGORI THM STRATEGY: Check radices, sign, and corresponding slices
| of digit arrays for inequality.

I

I

I

--| NOTES: None.
FUNCTION "=" (a, b : IN nunber) RETURN Boolean IS
BEGN-- "="
IF (a.radix /= b.radix) OR ELSE
(a.radix = invalid_nunber_flag) OR ELSE
(b.radix = invalid_nunber_flag) OR ELSE
(a.sign /= b.sign) OR ELSE

(a.high_order_digit /= b.high_order_digit) THEN

-- Conparison is not valid, signs differ, or nunbers are

-- of different

RETURN f al se;

ELSE

IF(a di gi
b. di gi

|
t

t(1 ..
(1 ..

| ength

a. high_order_digit) /=
b. high_order_digit)) THEN

-- Signs and lengths are sane, but digits differ
RETURN f al se;

ELSE

-- Signs,
RETURN t rue;

END | F;
END | F;

END "=

| engt hs,

and digits are the same

CMU/SEI-90-EM-3

129

numbers_body.a

FUNCTI ON NAME: nunbers. convert _to_string
ASSUVPTI ONS/ LI M TATI ONS: Paraneter is assuned canoni cal .

ALGORI THM STRATEGY: Character string is generated fromleft to right.
Attributes are used to generate and space characters.

NOTES: None.

FUNCTI ON convert _to_string (a : I N nunber) RETURN dynamic_string IS

-- String in which character representation of a is generated

result : dynami c_string;

-- Position in result.char up to which character array has been filled
string_length : dynam c_string_i ndex_range;

BEG N -- convert_to_string
IF (a.radi x = invalid_nunber_flag) THEN

-- "Error" returned if nunber invalid
result := invalid_nunmber_string;

ELSE

-- Generate sign
IF (a.sign = plus) THEN
result.char(1) :="+";
ELSE
result.char(1) :="-";
END | F;

-- Cenerate digits fromleft to right
string_length := 1;
FOR position IN REVERSE 1 .. a.high_order_digit LOOP
result.char(string_length+l ..
string_l ength+radi x_digit’inmge(a.digit(position))'last) :=
radi x_digit’imge(a.digit(position));
string_length := string_length +
radi x_digit’imge(a.digit(position))’last;
END LOCP;

-- Cenerate "Base" and radix
result.char(string_length+l .. string_|l ength+5+

radi x_range’ i mage(a.radi x)’last) := " Base" &
radi x_range’ i mage(a. radi x) ;
result.length := string_length + 5 + radi x_range’ i nage(a.radix)’| ast;

END | F;

-- Return string generated
RETURN resul t;

END convert_to_string;

130 CMU/SEI-90-EM-3

numbers_body.a

FUNCTI ON NAME: numbers."-" (binary m nus)
ASSUVPTI ONS/ LI M TATI ONS: Paraneters are assuned canoni cal .

ALGORI THM STRATEGY: |f operands are valid, the signs are checked to see

if they are the sane. |If they are, the difference is conputed using
nunbers."+" and nunbers."-" (unary minus). Oherw se, the operand
of larger magnitude is found, and procedure performsubtraction

is used to find the digits of the difference.

NOTES: None.

FUNCTION "-" (a, b : IN nunber) RETURN nunber IS

Nunber where difference is conputed

resul t . nunber;

CMU/SEI-90-EM-3

131

numbers_body.a

PROCEDURE NAME: nunbers."-".performsubtraction

PURPCSE: To generate the digits of the difference of two
mul ti pl e-precision integers.

--| PROGRAMVER: Lionel Deinel DATE WRI TTEN: 5/21/90

--| DATE OF LAST REVI SION: 7/26/90 VERSION: 1.1

--| PARAMETERS:

-- X (in) first operand

-- y (in) second operand

-- result (in out) on exit, contains digits and

pointer to high-order-digit of
difference; other fields are
unchanged

I NPUT/ QUTPUT: None.

ASSUMPTI ONS/ LI M TATI ONS: The operands are assumed to have
legitimate values and to share the sane radi x. The magnitude
of the first operand is assuned to be at |east as large as that
of the second.

ALGORI THM STRATEGY: If the digits of the operands are the sane,
zero is returned. Oherw se, subtraction is perfornmed on the
meani ngful slice of the digit array of the second operand and
the corresponding slice fromthe first operand, noting any
borrow in the high-order position. The renaining neani ngful
slice fromthe first operand is copied into the difference, and
the borrow, if any, is propagated.

ERROR CHECKS/ RESPONSES: None.
NOTES: The sign and radix fields of paranmeter result may contain

significant values. The procedure |eaves these unchanged.
The signs and radi ces of the operands are ignored.

PROCEDURE perform subtraction (x, y : IN nunber; result : I N OQUT nunber)
IS

-- Nunber borrowed fromplace to left
borrow : carry_or_borrow,

-- Digit position being operated upon
pos : digit_range;

132 CMU/SEI-90-EM-3

numbers_body.a

BEG N -- performsubtraction

I F (x.high_order_digit

= y.high_order_digit) AND THEN

(x.digit(l .. x.high_order_digit) =
y.digit(l .. y.high_order_digit)) THEN

-- Difference is zero

-- Copy zero val ue
result.high_order_digit := 1;

result.digit(l)

ELSE

1= 0;

-- Result is non-zero

-- Subtract digits in common between x and y

borrow : = 0;

F(Ppositio'n IN1 ..
IF (x.digit(position) - borrow < y.digit(position)) THEN
result.digit(position) := x.radix + x.digit(position)

y. high_order _digit LOOP

y. di git(position);

borrow : = 1;
ELSE

result.digit(position) := x.digit(position) -

y.digit(position);

borrow : = 0O;
END | F;
END LOOP;

-- Copy remaining digits to result

result.digit(y.high_order_digit+1l ..
x.digit(y.high_order_digit+1l ..

-- Propagate borrow to high-order digit

FOR position IN y.high_ order _digit

IF (borrow = 1) THEN
IF (result.digit(position) = 0) THEN

result.digit(position)

ELSE

result.digit(position) :=result.digit(position)

x.radi x - 1;

borrow : = 0;

END | F;
ELSE
EXIT,;
END | F;
END LOOP;

-- Elimnate | eading zeroes
pos := x.high_order_digit;
VWH LE (result.digit(pos) = 0) LOOP

pos := pos - 1;
END LOOP;
resul t. high_order_digit := pos;
END | F;

END perform subtraction;

x. high_order _digit)
x. high_order _digit);

X. high_order _digit

CMU/SEI-90-EM-3

133

BEGN -- "-"

IF (a.radix = b.radi x) AND THEN
(a.radix /= invalid_nunber_flag) AND THEN
(b.radix /= invalid_nunber_flag) THEN

--Subtraction is possible; compute difference

IF (a.sign = b.sign) THEN

-- Signs of operands equa

-- Set radix
result.radi x := a.radix;

I F (abs(a) <= abs(b)) THEN

-- Since |b] >=|a|, conpute digits of

performsubtraction(b, a, result);

-- Set sign (special case for zero)
I F (a.sign = plus) THEN

IF (result.high_order_digit = 1) AND THEN

(result.digit(l) = 0)

THEN
result.sign := plus
ELSE
result.sign := mnus
END | F;
ELSE
result.sign := plus;
END | F;
ELSE

-- Since |a] > |b|, conpute digits of
performsubtraction(a, b, result);

-- Set sign
IF (a.sign = plus) THEN
result.sign := plus;
ELSE
result.sign := mnus
END | F;
END | F;
ELSE
-- Signs of operands different
-- Conpute difference using addition
result :=a + (-b);
END | F;
END | F;

--- Return difference or invalid nunber
RETURN resul t;

END "-";

numbers_body.a

134

CMU/SEI-90-EM-3

numbers_body.a

FUNCTI ON NAME: numbers."+" (binary plus)
ASSUVPTI ONS/ LI M TATI ONS: Paraneters are assuned canoni cal .

|
I
I
|
| ALGORI THM STRATEGY: |f the operands are valid, the signs of the

| operators are conpared. |If they are different, the sumis conputed
- usi ng nunbers. "abs" and numbers."-" (binary subtraction). |If the

| signs are different, the operand with the |arger nunber of digits

| is found, and procedure performaddition is used to conmpute the digits

| of the sum

|

I

I

NOTES: None.

FUNCTION "+" (a, b : IN nunber) RETURN nunber IS

-- Nunber where sumis conputed
result : nunber;

CMU/SEI-90-EM-3 135

numbers_body.a

PROCEDURE NAME: nunbers."+".performaddition

PURPCSE: To generate the digits of the sumof two nultiple-precision

-- i ntegers.

--| PROGRAMVER: Lionel Deinel DATE WRI TTEN: 5/21/90

--| DATE OF LAST REVI SION: 7/26/90 VERSION: 2.1

--| PARAMETERS:

-- X (in) first operand

-- y (in) second operand

-- result (in out) on exit, contains digits and

pointer to high-order-digit of
sum other fields are
unchanged

I NPUT/ QUTPUT: None.

ASSUMPTI ONS/ LI M TATI ONS: The operands are assumed to have
legitimate values and to share the sane radix. The first
operand is assuned to have at least as nmany digits as that
of the second.

ALGORI THM STRATEGY: The largest digit array slices of neaningful
digits are added, and remaining digits of the first operand
are copied to the sum The carry fromthe first operation is
t hen propagat ed.

ERROR CHECKS/ RESPONSES: None.
NOTES: The sign and radi x fields of paraneter result nmay contain

significant values. The procedure |eaves these unchanged.
The signs and radices of the operands are ignored.

PROCEDURE performaddition (x, y : IN nunber; result : IN QUT nunber) IS

136 CMU/SEI-90-EM-3

numbers_body.a

-- Range for addition of two digits
SUBTYPE digit_sum IS natural RANGE 0 .. (2*mexi mumradix - 1);

-- Nunber carried fromplace to right

carry : carry_or_borrow
-- Sum of corresponding digits
sum : digit_sum

BEG N -- perform.addition

-- Add digits in common between x and y

carry := 0;

FOR position IN1 .. y.high order _digit LOOP
sum:= x.digit(position) + y.digit(position) + carry;
I F sum >= x.radi x THEN

result.digit(position) := sum- x.radix;
carry :=1;
ELSE
result.digit(position) := sum
carry := 0;
END | F;
END LOCP

-- Copy remaining digits of x to result
result.digit(y.high order _digit+l .. x.high order _digit) :=
x.digit(y.high_order_digit+l .. x.high_order_digit);

-- Propagate carry to high-order digit
FOR position IN y.high_order_digit+l .. x.high_order_digit LOOP
IF (carry = 1) THEN
sum:= result.digit(position) + carry;
I F sum >= x.radi x THEN

result.digit(position) := sum- x.radiX;
carry = 1;
ELSE
result.digit(position) := sum
carry := 0;
END | F;
ELSE
EXIT;
END | F;
END LOOP

-- Handl e carry fromhigh-order digit, if any
IF (carry = 1) THEN
I'F (x.high_order_digit < maxi num nunber_| ength) THEN
result.high_order_digit := x.high_order_digit + 1;
result.digit(x.high order _digit + 1) := carry;

ELSE
result.radix := invalid_nunmber_flag
END | F;
ELSE
result.high_order _digit := x.high_order _digit;
END | F;

END perform addition;

CMU/SEI-90-EM-3 137

BEG N -- "+"
IF (a.radix = b.radi x) AND THEN
(a.radix /= invalid_nunber_flag) AND THEN
(b.radix /= invalid_nunber_flag) THEN
-- Addition is possible; conpute sum
IF (a.sign = b.sign) THEN
-- Signs of operands equa
-- Set sign and radix
result.sign := a.sign
result.radi x := a.radix;
IF (a.high_order_digit >= b. high_order_digit) THEN
performaddition(a, b, result);
ELSE
performaddition(b, a, result);
END | F;
ELSE
-- Signs of operands different
-- Conpute sum using subtraction
IF (a.sign = plus) THEN
result := a - abs(b);
ELSE
result := b - abs(a);
END | F;
END | F;
END | F;

-- Return sumor invalid nunber
RETURN resul t;

END " +":

numbers_body.a

138

CMU/SEI-90-EM-3

numbers_body.a

FUNCTI ON NAME: nunbers."*"

ASSUMPTI ONS/ LI M TATI ONS: Paraneter a is assuned canoni cal .

ALGORI THM STRATEGY: |f operands are valid, nmultiplication is perforned.

A zero result is handled as a special case. |In the general case,
the sign and base are determ ned by the nultiple-precision factor.
The product is conmputed fromright to left, and overflow is checked
for before any carry is propagated.

NOTES: None.

FUNCTION "*" (f : INradix_digit; a : IN number) RETURN nunmber |S

-- Range for single digit product

SUBTYPE di gi t _pr oduct IS natural RANGE O .. a.radix**2 - a.radix;
-- Range for digits in base of operation

SUBTYPE | ocal _radix_digit IS radix_digit RANGE O .. a.radix -1;

-- Carry frommultiplication of one digit

carry : local _radix_digit;

-- Result of single digit multiplication plus carry
product : digit_product;

-- Nunber where product is conputed

result : nunber;

CMU/SEI-90-EM-3

139

BEG N -- "*"

IF (a.radix /= invalid_nunber_flag AND f<a.radix) THEN

-- Operands valid;
-- Set radix

result.radi x := a.radi x;

conput e product

numbers_body.a

IF (f=0 OR ELSE (a.high_order_digit=1 AND a.digit(1)=0)) THEN

-- Set product to zero
resul t. high_order_digit
result.sign := plus;
result.digit(l) := 0;

ELSE

-- Sumis non-zero
-- Set sign
If (a.sign = plus) THEN
result.sign := plus;
ELSE
result.sign :=
END | F;

m nus;

-- Multiply by factor,

carry := 0;

FOR position IN 1 .
pr oduct

resul t.digit(position)
:= product/a. radix;

carry
END LOOP;

-- Process carry;
IF (carry = 0) THEN

resul t. high_order_digit :=

ELSE

I F (a. high_order_digit
i nval i d_nunber _fl ag;

result.radix :=
ELSE

result.high_order _digit :=
result.digit(result.high_order_digit)

END | F;
END | F;

END | F;
END | F;

-- Return product or
RETURN resul t;

END "*";

a. high_order_digit
= (f * a.digit(position)) + carry;
;= product REM a.radi x;

=1

savi ng high-order carry

LOoOP

a. high_order_digit;

set product to invalid if overflow occurs

= maxi nrum_nunber _| engt h) THEN

i nval i d nunber

a. high_order _digit + 1;
i= carry

140

CMU/SEI-90-EM-3

numbers_body.a

FUNCTI ON NAME: numnbers. | engt h_of _nunber

ASSUMPTI ONS/ LI M TATI ONS: Paraneter a is assuned canoni cal .

digit field of input paraneter.

|
I
I
|
--| ALGORI THM STRATEGY: Proper value is copied form high-order digit
|
| NOTES: None.
I

FUNCTI ON | engt h_of _nunmber (a : IN number) RETURN digit_range IS
BEG N -- | ength_of _nunmber

-- Return length fromhigh-order digit field
RETURN (a. high_order_digit);

END | engt h_of _nunber;
PACKAGE BODY search |'S SEPARATE;

END nunbers;

CMU/SEI-90-EM-3 141

other_io.a

PACKAGE NAME: other io

PURPCSE: To provide instantiated |/ O packages for various units.

DATE OF LAST REVI SION: 8/1/90 VERSION: 1.1

|

I

I

|

--| PROGRAMMVER: Lionel Deinel DATE WRI TTEN: 5/ 20/ 90

|

| NOTES: This package required by packages nunbers. search and tinekeeper.
I

W TH text i o;

PACKAGE other_io IS
PACKAGE duration_io IS NEWtext _io.fixed_io (duration);
PACKAGE natural _io |S NEWtext_io.integer_io (natural);
PACKAGE integer_io |S NEWtext_io.integer_io (integer);

END ot her _i o;

142 CMU/SEI-90-EM-3

pdi.a

PROCEDURE NAME: pdi (nmain procedure)
PURPCSE: To find PDI's and PPDI s

PROGRAMMVER: Li onel Dei nel DATE WRI TTEN: 5/24/90
DATE OF LAST REVI SION: 8/8/90 VERSION: 2.0

INPUT: (Fromdefault file) conmmands and requests to accept conmands from
user.

(Fromfile "pdi.ckp") checkpoint information. File contains at nobst
one checkpoi nt record.

QUTPUT: (To default file) pronpts, status information, and PDls found.

(To file "pdi.ckp") information witten by programto all restart
froma checkpoint.

ASSUMPTI ONS/ LI M TATI ONS: The program has certain built-in limtations
that can be altered by changing constants in the code:

1. Nunmbers longer than 60 digits cannot be handl ed.
Therefore, searches can be perforned for at nost
| engt h-60 PDI s

2. The maxi mumradi x that can be accommodated is 90
Searches for long-length PDIs nay cause two kinds of problens:

1. No provision is made for output |ines exceeding the |ine
Il ength normal |y handl ed by the output device.

2. Available storage may be insufficient for performng some
searches. The anbunt needed is highly system dependent,
and the storage allocated for the search task may need
to be adjusted for particular systens or particul ar
sear ches.

ALGORI THM STRATEGY: Let the radix of the PDI's being sought be r. (See
background notes below.) The search proceeds by sel ecting the nunber
of digit r-1 in the nunber to be tested, then the nunber of digit

r-2, etc. A conbination of digits is counted as tested whenever
the distribution of all digits r-1, r-2, ... , 0 is deternined

Each tine procedure select _digits is called, the program
selects the distribution of another digit. The program selects
t he maxi mum nunber of occurrences of a digit before a distribution

i nvol ving fewer occurrences is tried. As the nunmber of instances of
each digit is deternm ned, the sumof these digits raised to the
search-order power is conputed in smn (the mninmum summation val ue
of the distribution being conputed). Should snmin become a number
whose length is greater than the length of the PDIs being sought,
t he program backtracks, thereby removing large digits in favor of
smal | er ones. A one-dinensional array, select_vector, keeps track of
how many instances of each digit have been selected in the current
distribution. The search algorithmfinds PDIs in roughly reverse
numeri cal order.

CMU/SEI-90-EM-3

143

pdi.a

ERROR CHECKS/ RESPONSES: Most errors likely to occur are caught by the
programand result in error nessages witten to the output file.
Sone of the these nessages are rather nonspecific, however, and
may require the user to nake reasonable inferences. It is intended
that invalid input fromall sources (including m ssing and unreadabl e
files) be recogni zed as erroneous and that appropriate user error
messages be di spl ayed.

COPYRI GHT NOTI CE:
Copyright (c) 1990 by Carnegie Mellon University, Pittsburgh, Pa.
Di stribution: Approved for public release; distributionis unlimted.

Produced by the Software Engineering Institute (SEI). The SEI is a
federally funded research and devel opnment center operated by Carnegie
Mel 1 on University and sponsored by the U S. Departnment of Defense under
contract F19628-90- C- 0003.

Perm ssion to nmake copies or derivative works of this software is
granted, wi thout fee, provided that the copies, derivative works, and
supporting documentation are not made or distributed for direct
conmerci al advantage, and that all copies, derivative works, and
supporting docunmentation contain this copyright notice and state that
copying is by perm ssion of Carnegie Mellon University.

This program finds perfect digital invariants (PD's) and

pl uperfect digital invariants (PPDIs). A PD is an integer, the
sum of whose digits, each raised to the sane integral power, equals
the nunber itself. For exanple,

5 5 5 5
4150 =4 +1 +5 +0 =1024 + 1 + 3125 + 0.

We call 4150 an order-5 (for the exponent), length-4 (for the nunber of
digits) PDI. Being a PDI is a property of the nunber and its base
(radix). It is easy to verify, for exanple, that 4150, interpreted as
an octal (base-8) nunber, is not an order-5 PDI. On the other hand,
the octal nunber 4423 is an order-5 PDI because

5 5 5 5
4423 =4 +4 +2 + 3 = 2000 + 2000 + 40 + 363,

where all the arithnetic shown is in octal. Because the radix of the

nunber is significant, we should speak of 4150 as an order-5,

| ength-4, base-10 PDI and of 4423 as an order-5, |length-4, base-8 PDI.

(Abbrevi ations are possible; we nmight say 4150 is an order-5 PDI,

under standi ng that the base is 10 and assuming the length is apparent.)

A PDI whose order is the same as its length is known as a pl uperfect
digital invariant, or PPDI. The deci mal nunber 8208, for exanple, is
an order-4 PPDI, since

4 4 4 4

-- |
-
-~
--
-- |
-- |
-
-
-
--
-
-
-~
--
-- |
-
-~
-~
--
-- |
-
-
--
--|
- 1. Background
-
-
-
--
-
-
-~
--
-- |
-
-~
--
-- |
-- |
-
-
-
--
-
-
-~
--
]
- 8208 =8 +2 +0 +8 = 4096 + 16 + 0 + 4096.

144 CMU/SEI-90-EM-3

pdi.a

PDIs and PPDIs have been tabul ated, but questions renmin about their
properties and distribution. (It is not known if there are PPDIs of
orders other than 1 in all bases, although there are non-trivial PPD's
in nearly all bases.) These are not burning questions of mathematics,
but they have received a degree of attention, particularly from

the recreational mathenmatics community. This program perfornms
exhaustive searches for PDs and PPD s.

2. References

Martin Gardner, THE | NCREDI BLE DR. MATRI X, pp. 205-209. New York:
Charl es Scribner’s Sons, 1976.

Li onel Deinel & M chael Jones, "Finding Pluperfect Digital
Invariants: Techniques, Results and Observations." JOURNAL OF
RECREATI ONAL MATHEMATI CS 14: 2, pp. 87-107, 1981-1982.

3. Program Operation Overview

I

|

I

I

I

I

I

|

I

I

I

I

|

|

I

I

I

I

|

I

| The programinteracts with the user through the standard input file

| (presuned to be the keyboard). Qutput is sent to the standard out put

| file (presuned to be a CRT). |If the user needs to save program out put,
- sone nechanismis likely available through the operating system

| (Most operating systens have a way of capturing all term nal output

| inafile.) The user interactively indicates whether search paraneters

| (which tell the program what searches to perform are to be taken from

| the file naned "input.dat" or whether a previously begun search is to be

| restarted froma checkpoint. |In the latter case, checkpoint information

| is read fromfile "pdi.ckp." Because searches can be | ong-running,

| the programrecords a checkpoint in "pdi.ckp" each hour. Should

| processing be interrupted for any reason, the programcan be restarted

| fromits state as of the last tine a checkpoint was witten.

I

|

|

I

I

I

I

|

I

I

I

I

I

|

I

File "input.dat" should contain any nunmber of triples of natural
nunbers, each triple specifying a search the programis to carry out.

-- Nurmbers may be separated by spaces or |ine breaks; "normal" input
-- should have a triple on each line of the file, although this format
-- is not required. In any case, any characters on the line after the

third nunber of a triple are ignored, and the first nunber of the next
triple is sought on the next line. The nunbers of the triple
represent, respectively, the radix, order, and length of the PDI s being
sought. The second and third nunbers of a triple should be equal,

of course, if the search is for PPDIs.

If the programis started froma checkpoint, the contents of
"input.dat," if any, are ignored; if the interrupted search is
conpl eted, the programterm nates.

CMU/SEI-90-EM-3 145

pdi.a

During a search, the following is witten to the screen

1. Wen the search begins, the date, time, and search
par aneters.

2. When a PDI is found, the nunber, elapsed tinme since the
begi nning of the search, and the nunber of conbinations
tested. The tine shown is clock tinme, not processor tine.

3. When a checkpoint record is witten, the date, tine,
el apsed time, nunber of conbinations tested, and search
state information: the values of snin, digit_to_place
(the next digit whose nunber of instances is to be
determ ned by select_digits), and sel ect_vector

4. \Wen the search ends, the el apsed time and nunber of
conbi nati ons tested.

While the programis running, the user may interact with it by typing
<return>. (Actually, the programreads any |line entered, but ignores
the actual contents of the line.) After a brief delay--for the sake
of efficiency, the programchecks the keyboard infrequently--the user
is pronpted with:

Enter "r" to resune search,

for status check of search,

to change checkpoint interval

"k" to change keyboard polling frequency, or
to quit:

The user should enter the appropriate letter and <return>. These
conmands, respectively, cause the programto resume its search

di splay the state of the search, change the frequency

wi th which checkpoints are taken (from once each hour), change the
frequency with which the keyboard is checked (the default is after
each 3000 calls to procedure select _digits), and term nate the program
The state information includes all the information printed when a
checkpoint is taken, plus the search paraneters, checkpoint interval
and keyboard pol l'ing frequency.

The user shoul d recognize that programefficiency and flexibility are
af fected by changi ng the checkpoint interval and polling frequency.

I f checkpoints are recorded too often, the search process is slowed
down, although |l ess conmputing time is wasted should the program have
to be restarted froma checkpoint. |If the nunber of calls to

select _digits before the keyboard is checked is nade too | ow, the
program becones very responsive to keyboard interrupts, but at a high
price, neasured in terns of search efficiency.

4. Procedure Overview

Procedure pdi pronpts the user to determne the source of input.

-- Entry calls are nade to task search to begin searches. |Illegal responses
-- by the user cause the pronpt to be redisplayed. After the
-- appropriate call is nmade to begin searching, an entry call to

synchronize is made to initiate nonitoring of the keyboard while
sear ches proceed

W TH nunber s;
W TH t ext _i o;

146 CMU/SEI-90-EM-3

pdi.a

PROCEDURE pdi |'S

-- Maxi mum |l ength of input Iine
line_length : CONSTANT : = 80;

-- Position of last character on input line

| ast : natural;
-- Flag indicating (if true) that a pronpt for a user command nust be out put
r epeat . Boolean : = true;
--Input line entered by user
response : string(l .. line_length);
BEG N -- pdi

-- Determine input option from user
VWHI LE repeat LOOP

-- Assune no need to repronpt
repeat := fal se;

-- Pronpt user and read response
text _i 0. new_|ine;
text_io.put_Iline

("Enter ""n"" for nornmal input fromfile ""input.dat""");
text _io.put_Iline
(" or ""r"" to restart fromfile ""checkpoint"": ");

text _io.get_line (item=> response, last => last);
-- Interpret user response
IF (last = 1) THEN

IF (response(1) = 'n’) THEN

-- Take search parameters from "input.dat"
nunmber s. sear ch. process_nornal _i nput.start;

ELSIF (response(1) = 'r’) THEN

-- Begin search fromcheckpoint file "pdi.ckp"
nunmber s. sear ch. do_search. enter_start_search_from checkpoi nt;

ELSE

-- Invalid user input (unrecognized character); nust repronpt
repeat := true;
text _i 0. new_|ine;

END | F;

ELSE

-- Invalid user input (>1 character entered); must repronpt

repeat := true;
text _i 0. new_|ine;

END | F;

END LOCP;

--Begin nonitoring keyboard for user request to enter conmmands
nunbers. sear ch. synchroni ze. start _noni tor;

END pdi ;

CMU/SEI-90-EM-3 147

process_normal_input_body.a

TASK NAME: nunbers. search. process_nor nal _i nput

set, entry do_search.enter_start_search is call ed.

NOTES: None.

-
]
--| ALGORI THM STRATEGY: Search paraneters are read fromfile and, for each
--
-
-

W TH ot her _i o;
W TH text _i o;

SEPARATE (nunber s. sear ch)

TASK BODY process_normal _input IS

-- lnput file

i nput © text_io.file_type;
-- Oder of PDIs to be sought

or der . natural;

-- Radix of PDIs to be sought

radi x : nunbers. radi x_range;

-- Length of PDIs to be sought
search_l ength : nunbers. digit_range;

-- Exception raised for any error related to opening input file
file_open_error : EXCEPTION,

BEG N -- process_nornal _i nput
SELECT
-- Wait for signal to begin reading file
ACCEPT start;
BEG N

-- Open input file
text _io.open (file => input, node => text_io.in_file,
nane => "input.dat");

EXCEPTI ON

WHEN t ext _i 0. nane_error =>
text_i o.new_|ine;
text_io.put_line ("Cannot find file ""input.dat""");
RAI SE fil e_open_error;

WHEN text_io.use_error =>
text_i 0. new_|ine;
text _io.put_line ("Cannot open file ""input.dat""");
RAI SE fil e_open_error;

VWHEN OTHERS =>
text _i o. new_|ine;
text_io.put_line ("Problemencountered opening file " &
"""input.dat""");
RAI SE fil e_open_error;

END;

148 CMU/SEI-90-EM-3

process_normal_input_body.a

-- Process search paraneters until end-of-file reached
VWHI LE (NOT text _io.end _of file(input)) LOOP

-- Read paraneters

ot her _i o. natural _i 0. get(input, radix);

ot her __io.natural _i o.get(input, order);

other _io.natural _i o.get(input, search_Ilength);
text _io.skip_line(file => input);

-- Call entry to begin search
search. do_search.enter_start_search (radi x, order,

END LOOP;
ABORT noni t or _keyboar d;
oR
TERM NATE;
END SELECT;
EXCEPTI ON

WHEN fil e_open_error =>
text _io.new |ine;
text_io.put_line ("Termnating progrant);
text _i 0. new_|ine;
ABORT noni t or _keyboar d;

WHEN text io.data error =>
text _io.new |ine;
text_io.put_line ("Error reading file ""input.dat""");
text _i o. new_|ine;
text _io.put_line ("Termi nating program);
text _i 0. new_|ine;
ABORT noni t or _keyboar d;

VWHEN t ext _i 0. end_error =>
text _i o. new_|ine;

search_l engt h);

text _io.put_line ("End-of-file error reading file ""input.dat""");

text _i 0. new_|ine;

text_io.put_line ("Termnating progrant);
text _io.new |ine;

ABORT noni t or _keyboar d;

WHEN OTHERS =>
text _i 0. new |ine;
text_io.put_line ("Programerror encountered");
text _i 0. new_| i ne;
text_io.put_line ("Term nating program');
text _i o. new_|ine;
ABORT noni t or _keyboar d;

END process_normal _i nput;

CMU/SEI-90-EM-3

149

search_body.a

PACKAGE NAME: nunbers. search

-
N
--| NOTES: For conveni ence in devel opment and nai ntenance, all tasks are
- separately conpil ed.

--|

SEPARATE (number s)
PACKAGE BODY search |I'S

-- Maxi mum l ength of input line
line_length : CONSTANT : = 80;

TASK BODY process_normal _i nput | S SEPARATE;
TASK BODY noni tor _keyboard | S SEPARATE;
TASK BCODY synchroni ze | S SEPARATE;

TASK BODY do_search_type |'S SEPARATE;

END sear ch;

150 CMU/SEI-90-EM-3

synchronize_body.a

TASK NAME: nunbers. search. synchroni ze

|
|
| ALGORI THM STRATEGY: Wait for call to entry start_nonitor, then start
| task nonitor_keyboard. Main part of task accepts calls to either
- (1) keyboard_interrupt, followed by check_interrupts or
| (2) check_interrupts.

I

I

I

I

NOTES: Several TERM NATE options on SELECT statenments are required to
assure proper term nation under any reasonabl e sequence of events.

W TH ot her _i o;
W TH t ext _i o;

SEPARATE (nunbers. search)
TASK BODY synchronize IS

-- New time requested between checkpoints

checkpoi nt _i nterval : duration;
-- Position of last character on input line
| ast : natural;

-- New new nunber of invocations of do_search.select_digits between checks
-- for keyboard interrupt from user

new max_calls_to_select_digits : natural;

-- Flag indicating (if true) that a pronpt for a user conmmand nust be out put

r epeat . Bool ean;
-- Input line entered by user
response : string(1 .. line_length);

CMU/SEI-90-EM-3 151

BEG N - -

synchroni ze

-- Wit for signal
ACCEPT start_nonitor;

to begin nonitoring keyboard for

synchronize_body.a

user comands

i nput

-- Signal nonitor_keyboard to accept user
noni t or _keyboar d. begi n_keyboar d_noni tor;
LOOP

SELECT

-- task nonitor_keyboard,
ACCEPT keyboard_i nterrupt DO

SELECT

ACCEPT check_interrupts (flag :
QUT duration;

interva

repeat := true
VWH LE repeat LOCP

Pronpt for
text_io.put_Iline

("Enter ""r"
text_io.put_line

S
text _io.put_Iline
(" et
text_io.put_Iline
(" ke

" frequency,

text _io.put_Iline

IF (last

If user has requested service,
then fromtask do_search

I nterpret user
1) THEN
I F (response(1)

calls are accepted first from

QUT interrupt_flag_type

max_calls : OUT natural) DO

user conmand

to resune search,")
for status check of search,")
to change checkpoint interval,");

to change keyboard polling" &

or");

(" gt to quit:");

Read user response
text_io.get_line (item=> response

| ast => last);
command

='r') THEN

Resunpti on of search requested

text_i o. new_|line;

flag :
r epeat

ELSI F (response(1)

flag :
r epeat

conti nue;
.= fal se;

's’) THEN

Status check requested
st at us;
.= fal se;

152

CMU/SEI-90-EM-3

synchronize_body.a

ELSIF (response(1) = 'c’) THEN

-- Checkpoint interval change requested
LooP
BEG N

-- Prompt for and read new checkpoint interval
text _io.put_line
("Enter new checkpoint interval in" &
" seconds and tenths of seconds:");
ot her _i o. duration_i o. get
(checkpoint _interval);
text _io.skip_line;
text _i 0. new |ine;
EXI T;

EXCEPTI ON

WHEN text _io.data _error =>
text_io.put_line ("Illegal value");
text _io.skip_line;

END;
END LOOP;
flag : = checkpoi nt _change;
interval := checkpoint_interval;
repeat := false;

ELSIF (response(1) = 'k') THEN

- - Keyboard pol Iing frequency change requested

LOOP
BEG N
-- Prompt for and read new pol ling frequency
text _io.put_Iline
("Enter nunber of digits handled" &
" between polling of keyboard:");
ot her _i 0. natural _io. get
(new_nmax_calls_to_select _digits);
text _io.skip_line;
text _i 0. new_|ine;
EXI T,
EXCEPTI ON
WHEN text io.data_error =>
text_io.put_line ("Illegal value");
text_io.skip_line;
END,;
END LOOP;
flag : = max_cal | s_change;
max_calls := new nmax_calls_to_select_digits;
repeat := false;

ELSIF (response(1) = 'q') THEN

-- Program term nation requested
ABORT process_normal _i nput;
ABORT do_sear ch;

ABORT noni t or _keyboard;

repeat := fal se;

text _i 0. new_|ine;

CMU/SEI-90-EM-3 153

synchronize_body.a

ELSE

-- Unrecogni zed comrand
text _io.new |ine;

END | F;
ELSE

-- Unrecogni zed command
text _i 0. new_|ine;

END | F;
END LOOP;
END check_i nterrupts;
OR
TERM NATE;
END SELECT;
SELECT

-- Wit for signal that operation is conplete
ACCEPT cl ear _keyboard;

OR
TERM NATE;
END SELECT;

END keyboard_interrupt;

-- |If user has not requested service, check fromtask do_search

-- cones here

ACCEPT check_interrupts (flag : OUT interrupt_flag_type;
interval : OUT duration; max_calls : OUT natural) DO

-- Reply that no service is requested
flag : = no_interrupt;

END check_interrupts;
OR
TERM NATE;
END SELECT;
END LOOP;

END synchroni ze;

154 CMU/SEI-90-EM-3

timekeeper.a

PACKAGE NAME: ti nekeeper

PURPCSE: To provide facilities for neasuring and displaying el apsed tinme
and current time. Cdients can get current tine, reset tinmer,
out put el apsed time since tinmer was reset, conpute el apsed tineg,
and conpare tines for equality.

PROGRAMVER: Li onel Dei nel DATE WRI TTEN: 5/21/90
DATE OF LAST REVI SION: 8/9/90 VERSION: 1.7

NOTES: Package intended to provide services w thout additional functions
of standard package cal endar.

W TH cal endar;

PACKACGE tinekeeper IS

-- Export type time from standard package cal endar
SUBTYPE tinme |IS cal endar.tine;

-- Export "-" function from standard package cal endar
FUNCTION "-" (x : time; y : time) RETURN duration RENAMES cal endar."-";
-- Export "=" function from standard package cal endar
FUNCTION "=" (x : tinme; y : time) RETURN Bool ean RENAMES cal endar."=";

-- Provide special value of type tinme to indicate need for special
-- function and to all ow procedure calls w thout correspondi ng paraneter
uninitialized_time : CONSTANT tinme := cal endar.tine_of (1901, 1, 1);

CMU/SEI-90-EM-3

155

timekeeper.a

PROCEDURE NAME: tinekeeper.start_tinme

PURPCSE: Reset tiner and return current tine.

--| PROGRAMVER: Lionel Deinel DATE WRI TTEN: 5/ 21/ 90
--| DATE OF LAST REVISION: 7/23/90 VERSION: 1.2

--| PARAMETERS:

-- t (out) current tine

| NPUT/ QUTPUT: None.
ASSUMPTI ONS/ LI M TATI ONS: None.
ERROR CHECKS/ RESPONSES: None.

NOTES: Procedure el apsed_tine can be called to print the elapsed tine
since the tiner was | ast reset.

PROCEDURE start _tine (t : OUT tine);

156 CMU/SEI-90-EM-3

timekeeper.a

PROCEDURE NAME: tinekeeper.tine_stanp

PURPCSE: Print time specified by input parameter or current tinme.

PROGRAMMVER: Li onel Dei nel DATE WRI TTEN: 5/21/90
DATE OF LAST REVI SI ON: 7/23/90 VERSION: 1.1
PARAMETERS:

t (in) tine to be printed or value of

of uninitialized_tine

I NPUT: None.

QUTPUT: (To default file) time of paraneter t or, if
t=uninitialized_time, current time. Mnth, day, year,
hours, mnutes, and seconds are shown
(exanpl e: "January 22, 1990 at 12:15:10.25"). OQutput is
neither preceded nor followed by new |ines.

ASSUMPTI ONS/ LIM TATIONS: It is assumed the output will fit on the
current |ine.

ERROR CHECKS/ RESPONSES: None.

NOTES: |f paraneter is omitted, procedure outputs current time.

PROCEDURE tinme_stanp (t : INtinme :=uninitialized_tine);

CMU/SEI-90-EM-3

157

timekeeper.a

PROCEDURE NAME: tinekeeper.get_time

PURPCSE: Get current tinme.

--| PROGRAMVER: Lionel Deinel DATE WRI TTEN: 5/21/90
--| DATE OF LAST REVI SION: 7/23/90 VERSION: 1.1
--| PARAMETERS:

| NPUT/ QUTPUT: None.
ASSUMPTI ONS/ LI M TATI ONS: None.
ERROR CHECKS/ RESPONSES: None.

I
I
I
I
I
I
I
I
I
- t (out) current tine
I
I
I
I
I
|
| NOTES: None.
I

PROCEDURE get _tinme (t : OUT tinme);

158 CMU/SEI-90-EM-3

timekeeper.a

PROCEDURE NAME: tinekeeper.print_el apsed_tine

PURPCSE: Print interval expressed in days, hours, minutes, and seconds.

PROGRAMMVER: Li onel Dei nel DATE WRI TTEN: 5/ 21/ 90
DATE OF LAST REVI SION. 8/9/90 VERSION: 1.2
PARAMETERS:

el apsed_in (in) interval to be printed
I NPUT: None.

QUTPUT: (To default file) value of elapsed_in, expressed in days,
hours, mnutes, and seconds. Labeled output is a m ninmmof 12
characters long and is neither preceded nor followed by new
lines. (Exanple: "1 day, 23 hours, 14 minutes, 26.1 seconds")

ASSUMPTI ONS/ LI M TATI ONS: Paraneter el apsed_in is assunmed to have a
positive val ue.

ERROR CHECKS/ RESPONSES: None.

NOTES: None.

PROCEDURE print _el apsed_time (elapsed_in : IN duration);

CMU/SEI-90-EM-3

159

timekeeper.a

PROCEDURE NAME: ti nekeeper.el apsed_time

PURPCSE: Print elapsed tinme since timer was |ast reset (by start_tine).

PROGRAMMVER: Li onel Dei nel DATE WRI TTEN: 5/21/90
DATE OF LAST REVI SION: 7/22/90 VERSION: 1.1
PARAMETERS:
t (in) end of interval being tined or value

of uninitialized_tine

I NPUT: None.

QUTPUT: (To default file) days, hours, mnutes, seconds between tine
timer was |last reset, totinmet, or, if t=uninitialized_tine, to
current time. Format is sane as that of print_el apsed_tine.

ASSUMPTI ONS/ LI M TATI ONS: Paraneter t assumed to be at |east as late
as when tinmer was last reset. Qutput is unpredictable if start_time
never call ed.

ERROR CHECKS/ RESPONSES: None.

NOTES: Timer is reset by call to start_time. |If parameter omitted,
el apsed tinme to current time is printed.

PROCEDURE el apsed_time (t : INtime := uninitialized_tine);

END ti nekeeper;

160

CMU/SEI-90-EM-3

timekeeper_body.a

PACKAGE NAME: ti nekeeper

NOTES: None.

W TH ot her _i o;
W TH t ext _i o;

PACKAGE BCODY tinmekeeper 1S

-- Ranges for valid nunbers of hours and m nutes
SUBTYPE hour _nunber IS natural RANGE 0 .. 23;
SUBTYPE mi nute_nunber |S natural RANGE O .. 59;

-- Constants in seconds

seconds : CONSTANT duration := 1.0;
one_day . CONSTANT duration := 86_400*seconds;
one_hour : CONSTANT duration := 3 _600*seconds;

one_m nute : CONSTANT duration : 60*seconds;

-- Starting time for tiner.
time_0 : time

uninitialized_tineg;

CMU/SEI-90-EM-3

161

timekeeper_body.a

PROCEDURE NAME: tinekeeper.start_tinme

-
]
--| ALGORI THM STRATEGY: Cet tinme from cal endar. cl ock.
--|
--| NOTES: None.

-

PROCEDURE start _tine (t : OUT tine) IS

BEG N -- start_tinme
-- Reset timer to begin at current time and return time to caller.
time_0 := cal endar. cl ock;

t :=time_0;

END start _tine;

162 CMU/SEI-90-EM-3

timekeeper_body.a

PROCEDURE NAME: tinekeeper.tine_stanp

|

|

| ALGORI THM STRATEGY: Procedure cal endar.split used to separate tinme

| to be displayed into nonth, day, year, and seconds. Seconds broken
- down into hours, mnutes, and seconds by repeated subtraction.

I

I

I

I

I

NOTES: Two spaces are used for printing hours, minutes, and seconds,
even if only a one-digit nunber is required. Seconds are printed to
two deci mal pl aces.

PROCEDURE time_stanp (t : INtime := uninitialized_tinme) IS

-- Type to facilitate printing of nonths
TYPE nonth_name | S (anuary, ebruary, arch, pril, ay, une, uly, ugust,
ept enmber, ctober, ovenber, ecenber);

-- Initial characters of nmonths. Needed because initial capitals

-- are desired with other letters in nmonth names | owercase.

nmonth_initial _char : ARRAY (0 .. 11) OF character := ("J', '"F, 'M,
A, M, Y,), A, 'S, 0, N, D),

-- Package for nmonth_nane |/0O
PACKAGE nmonth_io IS NEWtext_io.enuneration_i o (nonth_nane);

-- Tine to be printed
stanp_tine : ting;

-- Conponent values of time to be printed

year : cal endar. year _nunber;
nont h . cal endar. nont h_nunber;
day . cal endar. day_nunber;
hour s : hour _nunber;

m nut es : m nute_nunber;

seconds : cal endar. day_durati on;

CMU/SEI-90-EM-3 163

timekeeper_body.a

BEGA N -- tine_stanp

-- Determine if timet or current time is to be printed
IF (t = uninitialized_tine) THEN

stanp_time := cal endar. cl ock;
ELSE

stanp_tine :=t;
END | F;

-- Break time to be printed into conponents
cal endar.split (stanmp_tine, year, nonth, day, seconds);

-- Qutput nonth

month := nonth - 1;

text_io.put (month_initial_char(nmonth));

nont h_i o. put (nont h_nane’ val (nonth), set => text_io.|ower_case);
text_io.put (" ");

-- Qutput day, year, " at "

ot her _io.integer_io.put(day, width => 1);
text_io.put (", ");
other_io.integer_io.put(year, width => 4);
text_io.put (" at ");

-- Cal cul ate and out put nunber of hours

hours : = 0;

WHI LE (seconds >= one_hour) LOOP
seconds : = seconds - one_hour;
hours : = hours + 1;

END LOOP;

other_io.integer_io.put (hours, width => 2);
text_io.put (":");

-- Calcul ate and output nunber of ninutes

m nutes := 0;

VWH LE (seconds >= one_ninute) LOOP
seconds : = seconds - one_m nute;
mnutes := mnutes + 1;

END LOOP;

other_io.integer_io.put (mnutes, width => 2);
text_io.put (":");

-- Qutput number of seconds
ot her _io.duration_io.put (seconds, fore => 2, aft => 2);

END ti me_st anp;

164 CMU/SEI-90-EM-3

timekeeper_body.a

PROCEDURE NAME: tinekeeper.get_time

NOTES: None.

-
N
--| ALGORI THM STRATEGY: Tinme returned from cal endar. cl ock.
-~
-~
-

PROCEDURE get _time (t : OUT time) IS
BEG N -- get _tine
t := cal endar. cl ock;

END get _ti ne;

CMU/SEI-90-EM-3 165

timekeeper_body.a

PROCEDURE NAME: tinekeeper.print_el apsed_tine

ALGORI THM STRATEGY: Paraneter el apsed_in is assigned to el apsed, and
number of days, etc., determ ned through repeated subtraction.

NOTES: Tests are made to assure grammatical output ("1 hour," not
"1 hours," etc.).

PROCEDURE print _el apsed_time (elapsed_in : INduration) IS

-- Seconds of elapsed_in yet to be accounted for in ternms of days, etc.
el apsed : duration;

-- Nunber of days, hours, mnutes, and seconds so far found
-- ininterval elapsed_in

days : natural := 0;

hour s : hour _nunber := 0;

m nut es : mnute_nunber := 0;
seconds : cal endar. day_durati on;

166

CMU/SEI-90-EM-3

timekeeper_body.a

BEG N -- print_elapsed_tine

-- Save interval to be printed in el apsed
el apsed : = el apsed_i n;

-- Conpute nunber of days in interval
WH LE (el apsed >= one_day) LOOP

el apsed : = el apsed - one_day;
days := days + 1;
END LOOP;

-- Conpute nunber of hours in interval
VWH LE (el apsed >= one_hour) LOOP

el apsed : = el apsed - one_hour;
hours : = hours + 1;
END LOOP;

-- Conpute nunber of minutes in interval
VWH LE (el apsed >= one_ninute) LOOP
el apsed : = el apsed - one_mi nute;
mnutes := mnutes + 1;
END LOOP;

-- Qutput nunmber of days, if any
IF (days > 0) THEN
other_io.integer_io.put (days, width => 1);
| F (days = 1) THEN
text_io.put (" day, ");
ELSE
text_io.put (" days, ");
END | F;
END | F;

-- CQutput nunber of hours, if any
IF (days > 0) OR ELSE (hours > 0) THEN
other __io.integer_io.put (hours, width => 1);
IF (hours = 1) THEN
text_io.put (" hour, ");
ELSE
text_io.put (" hours, ");
END | F;
END | F;

-- Qutput nunber of mnutes, if any
IF (days > 0) OR ELSE (hours > 0) OR ELSE (minutes > 0) THEN
other_io.integer_io.put (mnutes, width => 1);
IF (mnutes = 1) THEN
text_io.put (" mnute, ");
ELSE
text_io.put (" minutes, ");
END | F;
END | F;

-- CQutput nunber of seconds
other_io.duration_io.put (elapsed, fore => 2, aft => 1);
text_io.put (" seconds");

END print_el apsed_ti ne;

CMU/SEI-90-EM-3 167

timekeeper_body.a

PROCEDURE NAME: ti nekeeper.el apsed_time

ALGORI THM STRATEGY: Cal | print_elapsed_time to output |ength of
appropriate interval.

NOTES: None.

PROCEDURE el apsed_tinme (t : INtime := uninitialized_tine) IS
BEG N -- el apsed_tine

-- Qutput length of interval fromfromtime_0 to current time or
-- totinet
IF (t =uninitialized_time) THEN
print_elapsed_tinme (cal endar.clock - time_0);
ELSE
print_elapsed_time (t - time_0);
END | F;

END el apsed_ti ne;

END ti nekeeper;

168 CMU/SEI-90-EM-3

Diskette Order Form

Machine-readable source code for the Ada program in this report (CMU/SEI-90-EM-3)
is available from the SEI either on a 5-1/4” diskette for IBM PCs and PC-compatibles or
on a 3-1/2” diskette for the Apple Macintosh. Each diskette also includes ASCII ver-
sions of the exercises from the text. To receive the distribution diskette, return this

form with $10.00 payment to:

Education Program Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Checks should be made payable to Carnegie Mellon University.

Please send: |:| PC Disk |:| Macintosh Disk

Send to:

Name

Address

Tel. No.

E-mail

