
IMPLEMENTATION OF PROGRAMMING STANDARDS
IN A COMPUTER SCIENCE DEPARTMENT

Lionel E. Deimel, Jr.
Mark POllefsky

Computer Science Department
North Carolina State University
Raleigh, North Carolina 27650

1. Introduction

As programming has evolved from a black art
practiced by eccentric geniuses to a common
occupation of ordinary persons, the importance of
program structure and programming style has been
increasingly recognilled. Although there is surely
no "theory of programming" yet, there is enough
concensus about what techniques have and have not
proven effective that this knowledge is being
codified and widely disseminated.

The teaching of programming in the
universities has undergone enormouS changes during
this evolution. Structured programming is almost
universally accepted and taught in academe.
Largely because of the structured programming
movement, the effectiveness of teaching in
programming courses has improved, particularly for
the mediocre student. Evidently universities are
not doing a sufficiently good job, however, becsuse
there are still complaints that computer science
students in upper level courses cannot program.
Many students ask "if the program worked, why
didn't I get an A?". Students are confused over
what is required of them, and plead that "Professor
X said last term to do it this way."

Agreement about general programming
methodology is relatively easy to reach within a
single computer science department. However,
individual notions concerning the details of that
methodology are likely to differ significantly.
Agreement to teach "structured programming," for
example, leaves many issues undecided, and
different teachers may handle these issues in
different ways. Such diversity leads to confusion
among students, who must resolve the different
points of view. Too many instructors expect
students to learn their particular documentation
and programming style through osmosis. Instructors
will have honest differences: What are acceptable
forms of indentation? What should appear in the
comments at the top of a procedure? The exact
resolution of such issues is less important for the
student than that they be resolved.

2. Programming Standards

The problems we have cited stem for a lack of
explicit agreement within the faculty concerning
the finer details of programming methodology and an
effective method of communicating these details to
students. These problems can be alleviated only by

142

establishing a written set of departmental
programming standards. Furthermore, the standards
must be accepted by all instructors, so that they
not confuse the students but instead give them a
sense of uniformity and continuity within the
curriculum.

What sort of standards are appropriate for
this purpose? We feel the standards should be
broad, so that they are applicable to a variety of
languages and circumstances, although certain
language-specific rules will also have to be
established. The standards should not be so
restrictive as to discourage a student from
developing his own style or to unduly constrain
instructors. Such standards might, for exsmple,
encourage the use of a particular indentation rule
but should also suggest acceptable variations of
this rule. It is important the student explore
different styles, but we shOUld create an
environment in which he does not do so randomly.

The standards should establish rules for
deciding on the appropriate control constructs to
be used (when to use an iterative DO as opposed to
a DO •••WHILE, for example). Proper use of data
types should be addressed (say, the use of fixed
point rather than floating-point counters). The
standards should demand that a program contain
comprehensible procedure, section, line, and
declaration comments, and that it utilize mnemonic
label and variable names. User orientation and
program generality can be encouraged by requiring
(in general) echoing of data, input and parameter
validation, readable output, parameterized
algorithms, and so forth.

3. Enforcement

Codifying a set of rules without enforcing
it is probably even worse than having no rules at
all. Scanning only a program's output and checking
that it is "structured" without exhaustively
examining the code and documentation is like
reading an English theme for content while ignoring
organization, spelling, snd punctuation.

A line-by-line program examination obviously
takes significantly more time and effort than is
typically expended on program grading. We believe
this more extensive quality control can be
adequately prOVided by intelligent, ;ell-trained
student grading assistants who can evaluate an
algorithm's design, the program documentation, and



eVen its coding.

Obviously such strict quality control has its
costs. First, the department must be able to agree
upon a written set of documentation and programming
guidelines. Individuals may have to relinquish
some personal rules or biases for the sake of
consistency. Second, from preliminary
observations, apprOXimately 30 minutes is needed to
examine the average 100-statement program. If the
program is found lacking, the grader must determine
the nature of the difficulty before deciding how
many points to deduct.

The standards should not specify point values
associated with infractions; the instructor can do
so in light of his objectives for a particular
assignment or the course as a whole. Establishing
such a table of specific point values for each
assignment allows a more objective evaluation of
programs than the subjective "gut feeling"
approach.

Finally, the graders probably need to be the
cream of the crop of available student
assistants--they must be able to evaluate problem
refinements/designs, to find "bugs" and assess
their seriousness, to determine if error cases are
handled properly, and to locate redundant code, all
of these without running the programs they are
evaluations.

4. Training Procedures

What is the best way to educate a group of
undergraduate or graduate students to be able to
grade programs according to the standards? This
semester the North Carolina State University
Computer Science Department has initiated a clinic
for explaining the standards and giving practice in
applying them to student-written programs. The
clinic consists of at least three sessions the
perspective student grader must attend. Faculty
attendance has also been encouraged.

Session 1 discusses the philosophy behind this
new program grading method and how it can provide
the student with valuable feedback and
reinforcement. Session 2 discusses the
documentation standards and how they contribute to
better programs. To make the standards more
concrete, student programs, both good and bad, are
examined, and acceptable and unacceptable
practices are pinpointed. We discuss why
standardization is crucial, what a program should
look like and why, why documentation is important,
and why line-by-line evaluation is necessary.
Session 3 involves a similar examination of
programs, this time focusing on problem refinements
and coding techniques. While probing the details
of the program coding, we take a second look at
the documentation. The last session gives practice
in grading sample programs with instructor
feedback, followed by a final "examination" to
rank the group of graders.

Most of the first two sessions are language
independent: program development, documentation,
and coding techniques are discussed in general
terms applicable to most languages. Several ideas
or techniques peculiar to PL/I are demonstrated,
but since PL/I is the "departmental language," all

143

the graders are already familiar with the language.
Session 3 obviously needs to be much more language
specific, but still, many of the lessons will carry
over into other languages. All graders will be
"certified" to grade PL/I programs. We are
providing additional "session 3' s" for other
languages (FORTRAN, assembler), so graders can also
be certified in those languages.

5. Benefits

Considering all the costs associated with
this scheme, how do we expect to benefit? Applying
the standards to all sections and courses in the
curriculum should provide more consistent,
predictable grading, which will decrease students'
uncertainty about what a particular professor
actually expects. Students will have to understand
the programming language better because their
programs will be so minutely scrutinized.
Misconceptions and bad habits established early in
the student's career remain handicaps for a long
time, particularly since programming skill is
cumulative in nature. Furthermore, although
computer sicence and programming are not
synonymous, programming competence is a necessary
tool for learning computer science.

In later courses such as data structures or
numerical methods, students will be able to
concentrate on course concepts rather than
grappling with an untamed tool. Neither office
hours nor lecture time will have to be devoted to
explaining the intricacies of the programming
language supposedly being employed only as a
learning tool.

We also believe that tighter grading standards
will tend to "weed out" marginal computer science
students before they reach the high level courses
where instructors are more reluctant to fail them
on their lack of programming ability alone.

As more students become indoctrinated in the
standards by our regular courses, we would hope to
shorten the grading clinic. Documentation
guidelines and coding rules will have been
explained and practiced in previous coursework.
Training will still be needed in the mechanics of
applying the standards in grading, however.

Whether the benefits sought are realized will
be greatly dependent upon faculty commitment and
co-operation. They will also be affected by the
quality of the graders. We feel the NCSU plan has
good prospects for success and believe it can serve
as a model for future programs designed to make the
teaching of programming a more uniform and
algorithmic endeavor.


