
Requirements for Student
Programs in the Undergraduate
Computer Science Curriculum:

How Much is Enough?

Lionel E. Deimel, Jr.
Mark Pozefsky

Department of Computer Science
North Carolina State University
Raleigh, North Carolina 27650

ABSTRACT What Can We Ask?

Student-written programs accepted by computer
science instructors are usually inferior to pro
grams which exemplify currently-accepted "good"
professional practice. Although enforcing more
rigorous standards for programs places an addition
al burden on students and faculty alike, substan
tial benefits may be gained thereby. The nature
and implementation of such standards are discussed.

A Dilemma

A recent survey of B.S. graduates from the
Computer Science Department at North Carolina
State University elicited numerous comments about
the quality of the undergraduate curriculum at
North C~rolina State University. One particularly
striking remark was that programs routinely
accepted by Computer Science instructors would not
be considered even minimally acceptable in an up
to-date programming shop. The person who made
this observation clearly felt his training in the
Computer Science Department was unrealistic. On
the other hand, one hears pleas for mercy from
current students, who claim that demands for
carefully designed, well-documented programs dis
rupt their lives with sleepless nights at the
Computing Center. These students do not exag
gerate, yet neither does the graduate--the instruc
tor is faced with a difficult decision: how much
can reasonably and profitably be expected of stu
dent-written programs?

The dilemma is actually somewhat more complex.
With the growing recognition of the importance
of program structure and documentation, there
has developed a consensus that programs have to
do more than just "work." In the first and
second programming courses, students are re
quired to produce better designed and documented
programs than they were a few years ago. Quite
specific new standards are being imposed. These
standards are less likely to be imposed on pro
grams written for data structures, numerical
analysis, or simulation courses, where improved
programming skill is not a major objective. What
stance should instructors adopt with regard to
programming assignments in these courses where
programming skill is, in a sense, incidental?

14

Let us first characterize what we might like
to require of student programs. The primary
requirement for a program is to accomplish the
function outlined in the assignment specification.
The program should be fully debugged and tested.
Hence, it "works" for all input in the manner
specified by the problem assignment. Ideally,
programs are required to produce "correct" out
put for "good" aata and output meaningful diagnos
tics and possibly implement recovery procedures
for "Dad" data.

The actual source code should be modular and
use structured control constructs in a way that
reflects the logic of the task being performed.
The programming language should be used intel
ligently. (FL/I programs should not use preci
sions in variable declarations that are not
"natural" for tfie host machine, for example.)
Tfie code should be documented to clarify what is
being done and should be formatted in such a way
as to make the structure clear. Each module
(procedure, suoroutine, etc.) should be preceded
oy a prologue of comments providing such infor
mation as module name, programmer name, date
written, purpose, parameters (if any), algorithm
description, error considerations, and input/
output formats. All variables should be declared,
and their exact functions spelled out. Non
obvious constants should also be explained.

For certain assignments, particularly in
advanced courses, additional requirements beyond
the production of a program may be imposed. The
student might be required to produce user
documentation, additional technical documentation,
or associated job control procedures.

The general case for such program requirements
is adequately detailed elsewhere [3J. These
requirements have come to be accepted as part of
good programming practice. But is it practical
and effective to demand such high standards of
undergraduates?

The Case for Moderation

Writing programs is very time-consuming. Few
people who have practiced the art of programming
wi~l dispute this statement. Furthermore, pro
gram writing as a course assignment is different



in a significant way from doing physics problems.
The computer monitor's a student's work in a way
that will not allow him to submit erroneous work
while maintaining the appearance (or the illusion)
of its being correct. The computer points out
mistakes, thereby pressuring the self-respecting
students to do more and better work than he might
otherwise. This fact is in large measure respon
sible for the student complaint that programming
courses carry too few credit hours. Programming
must be practiced to be mastered, however, and
the complaint appears inevitable. If a student
feels a programming course is unduly burdensome
in relation to its credit load, perhaps he is
pursuing the wrong major. Nonetheless, a single
instructor cannot claim all a student's time-
asking for all conceivable documentation and pro
gram generality may be excessive. We must not
convert a heavy burden into an impossible one.

Brooks, in his collection of essays The Mythical
Man-Month [1], makes the distinction between a
program and a programming product. The former
entity is the minimal requirement of a program
ming assignment--a program which can be run by
its author to perform some function. It differs
from what we would like students to produce in
most courses -- a programming product, a program
which can be run, maintained, and extended (per
haps by other programmers) and is generalized
enough to be useful under a variety of conditions.
Alas, Brooks estimates a programming product
requires three times the effort of a mere program.
In other words, requiring more niceties is equi
valent to tripling the size of a programming
assignment. This observation should give the
instructor pause. After all, few student-written
programs ever become production programs, and
many are written only to illustrate a particular
technique or language feature.

Undue emphasis on niceties particularly in
early courses, may even be counterproductive.
Certainly the student should not be led to
believe that it is unimportant that his program
does not "work" so long as it is constructed in
accordance with a particular set of rules. Yet
this impression is often conveyed. It leads to
"pretty" programs which are meaningless and to
over-documentation of programs, which obscures
rather than explains.

In answering the question of how much is
enough, we should realize that a program to
solve nearly any nontrivial problem can be ex
panded and perfected almost without limit.
Instructors should not require unreasonable
generality in programs (for example, requiring
extensive input validation for a simple program
being written to illustrate the use of a par
ticular language construct) and should help
their students recognize the point of diminishing
returns when perfecting a program.

Why We Should Still Ask for a Lot

The potential benefits of being more demanding
are substantial. They include giving the student
a better understanding of what computer profes
sionals do, increasing his effectiveness as a
programmer, and making his investment in program

15

writing pay long-term dividends. We feel these
benefits outweigh the arguments for accepting
less in student programs than would be required
by industry. This conclusion means, of course,
that both students (as programmers) and instruc
tors (as graders) need to work particularly hard
in computer science courses.

Perhaps the most compelling reason for requir
ing extensive program documentation and general
ity is to give the student a taste of the real
world. Ultimately, it is not fair to send the
student forth from academia naively believing he
will forever be asked to write modest little pro
grams for his personal use. Instead, he will
spend much of his time maintaining and extending
old programs, writing software to be used by non
programmers, and producing technical documents.
The student deserves to know these facts of life
so he can make an intelligent career decision.
He will be better served if we prepare him to do
well in the environment he is likely to enter by
making realistic demands upon him while he is in
school. The purist-scholar, of course, may argue
that only great principles should be taught at a
university, that certain details of implementa
tion should be left to industry and to trade
schools. We have, after all, flattered ourselves
with the title "computer science." To this we say
that in fact most computer science graduates will
first become programmers, and we bear an obliga
tion to help them become competent programmers.
Realistically B.S. computer science graduates are
no more "computer scientists" than B.S. physics
graduates are "physicists."

Requiring something beyond Brooks's program and
something more like his programming product is in
large measure a matter of making one's programs
more user-oriented. It is a real problem that
because of the nature of the academic environment,
students tend to write programs for themselves
intended for a single use. ~ost real programs are
not of this nature, but rather are written by pro
grammers for other users. Requiring students to
produce meaningful error messages, to validate
input, and the like makes them realize that they
will not generally be the ultimate users of their
software and encourages them to consider the needs
of those ultimate users.

Another reason for requiring a lot is that many
of the demands we are speaking of represent im
portant techniques for increasing programmer
effectiveness. The student who has to comment
what a variable represents must precisely deter
mine for himself what it represents. If the in
structor refuses to accept the statement that "I
is a pointer," the student will have to clarify
in his own mind what is being pointed at. Fuzzi
ness in this example leads to the "off-by-one"
syndrome: does I indicate the last used array
location or the next available one? Errors in
program design and coding decrease when such
details are explicitly confronted. If standards
are enforced, the student is more likely to re
cognize such alternatives and avoid confusion
between them.

Although student-written programs do not
generally graduate to production status, this fact



does not inevitably lead to the conclusion that
they need not conform to good programming practice.
The role of the one-time program--the code which
is written, run once, then thrown away--is very
limited. One-time programs have a way of being
picked up later and generalized or incorporated
into other software. This statement does not
usually apply to student programs, however. They
often truly are one-time programs which are dis
carded after they are graded. This is a shame.
To be sure, many student programs thereby get what
they deserve, but the student is not well-served.
The rarity of one-time programs should be point
ed out to him, and he should be encouraged to re
tain his programs. They may be of future use to
him in several ways.

Students usually retain their notes taken in
college courses. Many students save their text
books as well, and those who do not often wish
they had. The reason for this is that such
materials serve as excellent reference sources in
future years be~ause of the association the stu
dent has had with them. Not even the most
brilliant programmer can remember everything, so
he frequently consults old programs to see how fie
has handled certain problems in the past. He can
do this only if (1) the programs have Been re
tained and (2) the programs remain readable long
after they have been written. We should encourage
students to treat their programs exactly as they
do class notes. Programs should be bound and saved
for reference. This is another reason for requir
ing good structure and documentation in student
programs, as retention will do the student no good
if the programs are not readable.

User-oriented programs are usually generalized
programs. By requiring such programs, we get the
student to think of a program more as a function
which transforms valid inputs into valid outputs.
This, in~turn, will help a student recognize that
generalization in fiis suBprograms can allow tfiem
to fie utilized in future programs. That is, he
is, or can be, encouraged to build and use his own
program library. This again is possible only if
programs are retained.

We now must consider how our observations af
fect the way we teach computer science courses.

Implementation within the Curriculum

Program requirements should no doubt be most
strict in early courses, generally the first two
programming courses. If good habits are to be
inculcated in the student programmer, it is best
to begin the indoctrination from the very start.
Continuity of standards needs to be maintained
throughout the curriculum, however. If this is
to be done, the faculty needs to reach a consensus
that standards are necessary and must decide what
it considers important. This will no doubt rep
resent a thorny problem for many departm~nts, as
programming style remains highly individualized.
Perhaps a certain measure of faculty independence
may have to be surrendered in order to develop
shop standards for a department.

In the first course, standards must be imple_
mented incrementally, since it is impossible to

16

teach enough fine points of the art of programm
ing to allow each assignment from the first to
be covered by the same set of standards. Struc
tured programming and internal documentation
should be taught from the beginning; more subtle
issues such as the use of Boolean rather than in
teger flags can be introduced later.. It is impor
tant, however, not to cut too many corners just to
get students running programs quickly. Most impor
tantly, as standards are introduced, they must
be strictly enforced. In fairness, this means
they should be written down, so far as possible.
Enforcement, alas, requires reading programs line
by-line. The instructional support for this is
sometimes lacking, although it is a task which
might be successfully carried out by carefully
screened upperclassmen or graduate students. We
feel that certain needs of students can be ful
filled in no other way. In particular, students
learning to program in an incremental way (learn
ing half-truths in order to allow them to begin
writing programs) tend to fabricate misconceptions
about the environment in which they are working,
especially when the computer is initially treated
as a black box. Student programs reflect some of
these misconceptions. For example, a student
may initialize all variables, even those whose
values are immediately input to the program, so
that the computer will not have "undefined values"
within it. Such an error (and misconception)
would go unnoticed if programs were never care
fully read but only checked for correct output.
The misconception becomes an article of faith,
persisting long after the student's training
should have destroyed the myth. Other techniques
can also be used to encourage good habits, such
as distributing copies of good programs (from the
instructor or one of the better students), ex
cfianging student programs for comparison, and so
forth. In general, reading of programs should be
encouraged, just as general reading is encouraged
by.English teachers.

Conveying program design philosophy is parti
cularly difficult at the beginning, when the
student has little experience with computer soft
ware. Emphasizing that the compiler is just a
program can be of great help here. The compiler
was written by programmers for other users, and
those users (students in this case) are not in
terested in how it works, but are concerned about
receiving meaningful diagnosti~ Generality
and intelligent error handling can be encouraged
by citing this model. Testing programs with data
the student have riot seen helps enforce require
~ents for user-oriented features [2], and having
students exchange programs· for testing improves
student understarding of the need for such fea
tures.

The usual two programming courses taken by
computer science majors are insufficient to
develop real fluency in programming. If only for
this reason, weoeli\<ve'that standards should not
fie relaxed as students enter middle-level courses
utilizing programming assignments. Instructors
in sucfi. courses (for example, data structures)
sfiould still examine programs thoroughly and
severely penalize documentation lapses and clumsy
constructions. (Certainly the English Department
would not drop its requirements for proper spell
ing in tfiemes for middle-level literature



courses.) The arguments for asking a lot are
equally important here, particularly those relat
ing to increased programmer effectiveness and notes
for future reference.

In upper-level courses, we again believe stand
ards should not be relaxed. Their enforcement,
however, can be. If a student has had the dis
cipline we recommend, following the standards
will be second nature by the time he is a senior.
Certainly large programming projects need not
be read line-by-line. Spot checks can reveal
generally poor programming technique and reading
module prologues should make the overall program
structure clear. Projects of this nature usually
require user manuals to be written, and these
should be read carefully. By the time the stu
dent reaches this level, he should have gained
the maturity to recognize the value of the require
ments imposed upon him. Failure to use the tech
niques we advocate will result in less effective
programming, particularly where programming teams
are involved. The symptoms of this failure are
late programs and programs which do not perform
according to specifications. Students will tend
to use the methods we have tried to teach them if
only in self-defense. Thus, the standards in
large measure enforce themselves.

Summary

That computer programming courses consume more
time than other courses carrying equivalent credit
is unfortunate, but we feel there is little that
can be done about it. On the contrary, the dis
parity which now exists between what is required
of programs in school and what is required in
industry should not be tolerated. Although this
point of view requires more work on the part of
both students and faculty, the end result of its
implementation should be more effective program
mer training.

References

1. Brooks, F. The Mythical Man-Month: Essays ~
Software Engineering. Addison-Wesley,
Reading, Mass., 1975.

2. Deimel, L., and Clarkson, B. The TODISK
WATLOAD System: a convenient tool for
evaluating student programs. Proc.
16th Southeast Regional ACM Conf., 1978,
pp. 168-171.

3. Yourdon, E. Techniques of Program Structure
and Design. Prentice-Hall, Englewood
Cliffs, N.J., 1975.

17


