
CMS AT NORTH CAROLINA STATE UNIVERSITY:
TAILORING A TIME SHARING SYSTEM FOR COMPUTER SCIENCE INSTRUCTION

Lionel E. Deimel, Jr.

Department of Computer Science
North Carolina State University
Raleigh, North Carolina 27650

ABSTRACT

The convenience of a time sharing system from the
point of view of a computer science instructor is
considered. Tools which may be helpful for course
administration are described. The experience of
the North Carolina State Computer Science Depart­
ment with its IBM VM/CMS system is considered in
detail and its strengths and weaknesses noted.

1. ANCIENT AND MODERN HISTORY

Much has been written about tailoring the
interactive environment for. more effective pro­
gramming, both in the academic and nonacademic
setting. Less has been said about how that envi­
ronment can support more effective administ~ation
of programming classes and thereby improve the
quality of instruction. When the Computer Science
Department at North Carolina State University
(NCSU) began studying the purchase of an interac­
tive computer system to teach its undergraduate
programming courses, providing support for the
faculty in its teaching was considered an impor­
tant issue.

Four factors contributed to the departmental
concern for faculty support. First, the faculty
had many years' experience with a large IBM
System/360 batch system and its successors and
with IBM TSO time sharing. Certain aspects of
these systems--most notably the areas of file and
account security--were quite inflexible and had
often complicated the work of student and teacher
alike. This fact led to the insistence that any
new computer system provide relief from such
problems. Secondly, a number of administrative
tools which had proved quite useful had been
developed for the batch system, and it was
believed that any new system should provide
similar assistance. A third factor was that a new

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and / or specific permission.

© 1982 ACM 0-89791-067-2/82/002/0043 $00.75

43

interactive system was not meant to replace the
current System/370 providing batch and TSO serv­
ice, but only to supplement it. Therefore, it was
felt that communication between the two systems
was essential, to use hardware or software that
might be unique on one system or the other, to
avoid unnecessary duplication of files, and to
allow faculty to use either system for course­
related work irrespective of which one was being
used by their students. Finally, the increasing
Computer Science student population had severely
strained the ability of the department to service
its course demand. Anything which would ease the
teaching or administrative burden on instructors
would benefit the teaching mission and, indirect­
ly, the research mission of the department.

At the time the Computer Science Department
was studying the purchase of an interactive com­
puter system, the campus Computing Center was
doing the same. The Computing Center's goal, con­
ditioned in large measure by financial considera­
tions, was to provide interactive-edit/batch­
submission capability for the existing batch
system. For various reasons, financial considera­
tions prominent among them, the Computing Center
and Computer Science Department pooled available
funds and purchased an IBM 4341 processor on which
to run CMS under VM. Shortly after the system was
delivered, NCSU began running an enhanced system
known as VM/SP (System Product). For simplicity,
we will usually simply refer to the system as CMS.

2. THE CLEAN SLATE

Like most time sharing systems, CMS has both
features which make it an attractive vehicle for
teaching beginning programming courses and fea­
tures which make it unattractive. Also, like most
systems, one can add to or modify CMS to give it
more desirable characteristics. CMS users at other
institutions may be interested in the details of
our customizing efforts, whereas users of other
systems will want to concentrate on the underlying
philosophy of those efforts and interpret them in
the context of their own systems. The ideas
applied at NCSU do not, in general, rely upon the
peculiarities of VM/CMS. Nonetheless, since this
operating system is somewllClt unusual, a brief
description of it is in ~~der.

"VM" refers to the IBM Virtual Machine
Facility. This is an operating system which pro­
vides many users with "virtual" System/370 com­
puters. Each virtual machine acts like a complete
computer system devoted to a single user. A pro­
gram called CP (Control Program) allots real CPU
time on the real CPU to the virtual machines. CP
provides commands to manipulate the virtual
machines--to log on or log off, change peripheral
configurations, manipulate unit-record devices,
etc. CMS (Conversational Monitor System) is a
single-user interactive operating system which
runs on one of CP's virtual machines. It is CMS
which provides a file system for each user, pro­
cesses a command language (called EXEC2), and pro­
vides most services one expects of a time sharing
system. Disk storage is provided for individual
users in the form of "minidisks," segments of real
disks permanently assigned to particular users.
Access to minidisks by other users is controlled
through a system of passwords and entries in a
master directory defining individual user privi­
leges. A typical user is given a virtual machine
along with a unique userid and password. The vir­
tual machine has read-only access to a number of
system minidisks, one or more private minidisks,
and some assortment of virtual card readers, con­
soles, and printers. Other virtual devices may be
defined at will.

CMS has many virtues from the viewpoint of a
computer science department. The security fea­
tures of CMS are very good indeed--student files
can be compromised only through carelessness
(inadvertent disclosure of passwords) or outright
collusion. This is an important plus for a system
to be used in an academic environment. The abil­
ity to tailor the system to one's particular needs
through the use of stored lists of commands
(called "EXEC's" under CMS) is quite extensive.
It is this feature more than any other which
allows CMS (or some other time sharing system, for
that matter) to be treated as a clean slate on
which we may draw a system especially for computer
science instruction or for some other purpose.

CMS is not without drawbacks, however. The
unique construction of the system, ideal for such
activities as the development of operating systems
or of assembly language programs generally,
imposes unneeded and confusing complexity upon the
beginning programming student. The student can be
shielded from this complexity with difficulty and
then only incompletely. The fact that the user
interacts both with CP and CMS can be very con­
fusing, and the use of virtual card readers and
printers do, 3 not seem especially natural to a
user who has not graduated from a card-oriented
batch system. Nonetheless, CMS was judged to be
an adequate base on which to build a teaching­
oriented system, and experience has tended to jus­
tify that evaluation.

3. DIFFERENT STROKES FOR DIFFERENT FOLKS

The decision to purchase a computer jointly
with the Computing Center provoked both relief and
apprehension. The Computer Science Department was
quite happy not to be in the computer-running
business, a task which naturally devolved upon the

44

Computing Center, yet the faculty was concerned
about being at the mercy of an organization whose
stated objectives for the new computer were quite
distinct from its own. Nevertheless, these dif­
ferences in goals were never hidden, so that it
was understood by all concerned that different
classes of users would have to be treated differ­
ently.

Two major techniques were used for varying
the level of service provided users. One of these
was the varying of virtual machine characteris­
tics. In particular, the amount of virtual
storage available to an individual user can be
expanded or restricted to allow or disallow the
running of certain processors. (On other systems,
comparable mechanisms are usually available.) The
other technique used was to place processors
(PL/I, Pascal, PL/C, WATFIV, etc.) on different
minidisks. Access to these minidisks must be
granted explicitly in the master user directory.
This latter technique is the more useful, as it
allows even students in different classes access
to different selections of software. In practice,
beginning courses have had available a restricted
set of processors, whereas more advanced classes
(for example, the data structures course) were
given much more freedom in their use of proces­
sors.

Because the needs of Computer Science users
and other users of the system were so obviously
divergent, a special Computer Science "system"
minidisk was established on which to place soft­
ware being provided to Computer Science faculty
and students. An EXEC to access this disk was
placed on one of the "normal" system minidisks.
This gave the Computer Science Department complete
control over its own software--neither the
Computer Center's co-operation nor acquiescence
was required to add, delete, or modify software
used by the department. The disadvantage of this
scheme, of course, is the ongoing maintenance
problem thereby created for the department, a bur­
den not to be dismissed lightly.

As we mentioned earlier, students in differ­
ent classes can be given access to different soft­
ware. This tailoring can be done for individual
accounts also, of course, but the fundamental
group having common needs distinct from other
groups is the class. Computer Science faculty
planning for the advent of CMS on campus focused
much attention on the class unit. Previously,
classes had been granted single accounts for batch
or TSO access, and monitoring individual resource
usage and providing individual file security was
difficult. (Many schools, to their credit, have
always granted individual accounts to students, a
generally more satisfactory arrangement.) CMS
allows students in a given class to own their
private minidisks, access the Computer Science
minidisk (as can any user, in fact), and also have
read-only access to a minidisk reserved for the
use of their particular class. The instructor,
whose account is established at the same time as
those of his students, has read/write access to
the class disk. He may place any files or soft­
ware he wishes to make available to the class on
the class minidisk.

4. IN NUMBERS THERE IS GRIEF

Having to generate hundreds of student
accounts each semester is no trivial matter. The
task is complicated by students adding courses
late, changing sections, or dropping courses after
they have begun. (In the latter case, the stu­
dent's computer account is to be deleted.) These
tasks clearly need to be automated as much as pos­
sible and must be performed in a timely manner.
The approach taken at NCSU toward this problem
reflects the realities of the situation--at the
start of the semester, reasonably reliable roll
information is available from the registrar's
office, but thereafter adds and drops need to be
handled on a case-by-case basis. The Computing
Center arranged to obtain at the beginning of each
semester a magnetic tape containing class rolls
for courses using CMS. Software was then devel­
oped to generate accounts and passwords for each
student and to generate individual ID cards to be
distributed in class with this information. From
this point on, each instructor is responsible for
his own students' accounts. He has the ability to
create and destroy accounts as required and to
generate ID cards for new accounts. This arrange­
ment, only partially implemented as of spring
semester 1982, is very attractive for the instruc­
tor, as most of the account maintenance work is
done for him by the Computing Center without any
special effort on his part. At the same time,
however, when the need for an account maintenance
transaction is acute, as when a student adds his
course and needs computer access immediately, the
instructor needs to fill out no paperwork nor rely
on someone in another department across campus.
In fact, a grader is usually available to perform
the simple tasks needed to create the new account.

Even in small classes, but especially in
classes of (apparently) ever-increasing size,
record keeping can be burdensome. For a number of
years, the Computer Science Department has used a
program, GRADE75 , for maintaining grade records
and for computing and displaying grades. A
related program generates random ID numbers and ID
cards for students, and GRADE75 produces various
grade listings by these ID numbers, which can be
publicly posted. It was natural to want to have
these programs available under CMS, and their
installation was easily accomplished. GRADE75 ,
of course, requires a class roll. Therefore, a
CMS EXEC was created to take the roll file of
names and userids, as created originally by the
Computing Center from registration information and
later modified by the instructor, and create the
appropriate grading program roll file. This con­
stitutes something less than an integrated data
base approach to record keeping problems, but has
proved quite effective. At least for now, a more
grandiose system does not appear to be justified.
The scheme has the advantage of having the
identical grading programs available on both com­
puter systems, thereby minimizing maintenance
headaches. This consideration mitigates against
further integration of function, for example, the
production of ID cards containing both account
information and the GRADE75 ID number. Note that
it was decided not to use a single ID number for
both purposes, since although there is often need
for one student to tell another his userid, most

45

students are unlikely to want to divulge a code
number which will allow a fellow student to exam­
ine all their grades.

5. KEEPING THE LINES OF COMMUNICATION OPEN

Computer systems tend to be organic, ever­
developing entities. This is especially true of
newly-installed ones. It is important to keep
users abreast of changes taking place--of software
added, changed, or deleted, or of solutions to
recurring problems encountered by an inexperienced
user community. Different groups have different
needs for information, however. At the highest
level, CMS provides for the system administrator
to send broadcast messages to all users, but this
is a crude device for dissemination and cannot be
used effectively except for short, vital notices.
Since the Computer Science Department, as well as
the Computing Center, is now in the software busi­
ness, it too has need for broadcast messages for
its users. Even Computer Science instructors have
a similar need. What teacher has not realized an
hour after the last class before a programming
assignment is due, the crucial point he failed to
mention in his lecture? Obviously, the system
broadcast message service is not the answer to
everyone's need to publish information. The user,
insofar as he is a member of each group--of users
generally, of Computer Science users, of members
of a specific class--has need of two kinds of
information: time-critical headlines and detailed
explanations to be examined at greater leisure.
On NCSU CMS, we have tried to meet both kinds of
needs. An EXEC named BULLETIN prints out Computer
Science headlines from a special file on the
Computer Science minidisk. The MESSAGES EXEC does
the same for a class, by displaying the contents
of a similar file on the minidisk shared by class
members. More extensive notifications are avail­
able using an EXEC called NEWS, which handles
items of interest in the categories of "general,"
"CSC," and "class." (Other categories can be
established if needed.) NEWS displays a menu of
available notices from files on a system, the
Computer Science, or the class minidisk. It also
keeps track of what items a user has been informed
of by storing the data of the last invocation of
NEWS in a user file named PROFILE DATA, which also
contains information about the user required by
certain other EXEC's.

When a CMS user logs on, commands in an EXEC
called PROFILE are executed if that user has a
file of that name on his minidisk. (Similar fea­
tures on other systems are common.) This PROFILE
helps serve the functions both of setting up the
virtual machine configuration required by a member
of a particular group, and of communicating neces­
sary information to those who need it. All users
are encouraged to place certain commands in
PROFILE EXEC to match terminal characteristics
with CMS output. In addition, Computer Science
students are told to execute NCSCSC and CSCPROF
from this file. These commands invoke EXEC's to
make the Computer Science minidisk part of the
user's virtual machine (NCSCSC) and to perform
tasks on a list which has been changing as greater
experience with the system is gained (CSCPROF).
CSCPROF executes BULLETIN, MESSAGES, and NEWS for

information dissemination. (A user who is not a
class member has no class-related information dis­
played thereby, of course.) Also, if the instruc­
tor has provided an appropriately named EXEC on
the class disk, it too is executed, allowing him
to provide a special environment for his class.
This feature has proved quite useful.

Communication is not a one-way affair. Users
need to be able to report bugs and make sugges­
tions, and students sometimes need to communicate
with one another (admittedly, not always for legit­
imate reasons) or with their teacher. Reports of
system problems, user complaints, and suggestions
may be submitted to the Computing Center and
Computer Science Department through an EXEC called
SUGGEST. CMS provides an extensive file-transfer
capability, but Computer Science has made availa­
ble EXEC's called GIVE and TAKE to provide an
easier-to-usemail service among users. The abil­
ity of an instructor to receive messages from his
class can prove very helpful, as in the case where
his students discover his elision from his lecture
before he does, and GIVE and TAKE provide this
service. Of course, the instructor or his agent
needs to log on regularly to assure that messages
are received.

The faculty concern with communication facil­
ities to the existing System/370 used by NCSU has
already been mentioned. As implemented, this has
taken the form of a conduit to the batch input
stream from CMS. Output from batch runs submitted
through this channel return either to the CMS user
who originated the job or it can be routed any­
where normally-entered batch jobs may be sent.
This use of CMS is the primary one of interest to
the Computing Center, though it has been used
quite successfully in at least one Computer Science
course, a COBOL course which required a compiler
not available on CMS. The greatest use of the
facility by Computer Science users has been by
faculty members who have done most work on CMS,
but have used the other system for access to
special equipment such as printers with upper-
and lowercase characters, for access to files
created on the System/370, etc. To facilitate
tasks such as these, EXEC's have been created to
send files to the System/370 (EXPORT), obtain
files from that system (IMPORT), archive files to
tape (TOTAPE), and so forth. These EXEC's create
the necessary control card images to accomplish
their respective tasks. Information needed to
assemble the jobs comes from EXEC parameters, from
terminal prompts by the EXEC's, and from data
(such as batch machine account and password) from
the user's PROFILE DATA file.

6. NO ONE SHOULD TEST HIS OWN PROGRAM

For a number of years, the Computer Science
Department has, in many of its classes, collected
student programs and graded them based on their
performance processing data not seen by the stu­
dent in advance. The author and others have made
a case for this procedure elsewhere [1,3,4].
Among the advantages of this practice is the abil­
ity to run programs many times against different
data, to rerun programs to test for initially
unanticipated errors, and even to rerun a specific

46

program modified by the instructor to verify that
a program error has been identified correctly.
The student being tested in such a way learns to
write programs to specifications and is forced to
test his programs more thoroughly than he might
otherwise.

Collecting programs also discourages and
helps detect certain forms of cheating. On any
system where a student can edit his output (CMS
among them), the instructor cannot be sure that
output he receives from a student is really output
from the program which purportedly produced it.
The more evaluation relies on examination of pro­
gram output, the more serious this uncertainty
becomes. Generally, "old fashioned" batch systems
made cheating through manufacture of bogus output
or editing of actual output uneconomical for the
potential offender. An interactive system can
make this technique one of the simplest ways of
"correcting" minor bugs, however. Finally, if the
instructor has all student programs available to
him in machine-readable form, automated checks for
plagiarism can be run (see, for example, [4] and
[6]), and the programs can be archived for future
reference and comparison should collusion be dis­
covered among a group of students on a later
assignment.

Programs TODISK and WATLOAD formed the core
of the prototype program-collection system used by
Computer Science at NCSU [1]. This system was
succeeded by a more general facility called the
TODISKG/RUNCLASS system, batch-oriented software
upon which a corresponding CMS capability has been
built. The heart of the NCSU CMS program­
collection facility is a special virtual machine,
CTODISKG, which runs "disconnected" at all times.
(The CTODISKG machine is an interrupt-driven pro­
gram which does nothing unless service is explic­
itly required of it.) When the student is ready
to turn in his program for grading, he types a
line such as

TODISKG MYPROG PASCAL A (COURSE 102 SECTION 2 PA 3

This particular entry, for example, requests that
file MYPROG PASCAL A be submitted in fulfillment
of programming assignment 3 for section 2 of
CSC 102. After CTODISKG processes his request,
usually in a matter of seconds, the student
receives a message to the effect that his program
has been received. If this is not the first sub­
mission by the student for assignment 3, the
message indicates that the file just sent replaces
an existing file sent earlier. As files are
received by CTODISKG, they are time-stamped and
stored on CTODISKG's own private minidisk. The
time stamp provided by CTODISKG allows the
instructor complete flexibility in setting dead­
lines for turning in assignments. In practice,
due times are at least as likely to be established
at night or in the wee hours of the morning as
during the day. Students can submit programs only
on their own behalf (CMS prevents misrepresenta­
tion of identity by the sender) and only for
courses for which they have been authorized. (See
below.) Note that CTODISKG provides effective
general-purpose one-way communication from student

to instructor, and it has been used for messages as
well as programs. At least one instructor has con­
sidered using it as a general work-submission
facility for homework, program specifications, etc.
The availability of a text-processing program
(Script) on the NCSU CMS system makes this espe­
cially attractive to students and not unattractive
to instructors.

Authorization to use CTODISKG by student and
instructor alike must be explicit. The instructor
requests the service of the departmental computing
coordinator (as the system is maintained by
Computer Science). The coordinator then places
the instructor's userid, course, and section in an
authorization table used by CTODISKG. As for other
functions, the instructor is then responsible for
maintaining the list of authorized students in his
class. This is simply done using an EXEC and the
userid list from the Computing Center, as for the
grading program. The instructor types a command
such as

MAKEROLL COURSE 102 SECTION 2

to send CTODISKG the student roll. Other EXEC's
allow the instructor to inquire as to which stu­
dents have already submitted programs or to
request that all student submissions be sent to
his virtual machine. Normally, CTODISKG only sends
programs not sent previously, so that late programs
may be processed without interference by previously
graded assignments, although this feature may be
overridden when necessary. The instructor may also
request that programs for a certain assignment
stored on CTODISKG's disk be deleted.

Once the instructor has his students' programs
in hand, he must run them for grading. For this,
several EXEC's have been written for creating batch
jobs either for CMS using the CMSBATCH facility or
for the System/370. In the latter case, output may
be printed or examined through the facilities of
either computing system at the discretion of the
instructor.

7. MISSING LINKS

The NCSU CMS system provides quite a lot of
assistance to the Computer Science instructor. He
may easily add or delete student accounts, has good
two-way communication with his students, including
the ability to collect and run programs from his
students with little effort on his part, can main­
tain his grade records easily, and has convenient
access to another computer system.

Some features that might be useful have not
been provided. The collection of programs by the
instructor allows for the examination of those
programs by some form of plagiarism checker. Such
a feature was in fact planned in the prototype sys­
tem TODISK [1], but it was never implemented. It
is unclear just how useful such tools can be,
particularly in courses after the first programming
course. The fact that NCSU CMS is not now being
used for the first programming course somewhat dis­
courages implementation of such a program at this

47

time.

A more significant omission may be the
unavailability of statistical information about
student use of the machine. At present, no
meaningful summaries of account usage by his
students is provided instructors either on- or
off-line. In some cases, this information can be
very helpful in identifying students who are not
working hard enough, those working too hard
(fulfilling assignments with great difficulty or
performing other tasks on the computer which maYor
may not contribute to their computer science edu­
cation), or simply working in a counterproductive
way. Such information has been helpful in the
past at NCSU in confirming cases of plagiarism by
showing that a student did insufficient work on
the computer to explain his program. Although
statistical summaries of number of logons, CPU
time used, and the like are more often than not
used in a crude, ad hoc way, some experiments have
attempted to make more meaningful such measure­
ments. For example, Hsia and Petry report on a
pedagogically-oriented program-development envi­
ronment which constrains the student to work in a
prescribed, systematic way [5]. The system not
only encourages good work habits, but also col­
lects data on the student's progress, which could
then be made available to the instructor. Systems
such as this one certainly bear further investiga­
tion. They do have the disadvantage of requiring
extensive development time themselves and neces­
sarily incorporate some particular design philos­
ophies, though perhaps they can be script-driven
to the extent that changes in pedagogy can be
incorporated easily into them.

The Computer Science Department has made no
attempt to provide any automatic checking of stu­
dent program output. The department has placed
great emphasis in recent years on program style,
documentation, and structure. [2], so that checking
output for "correctness" requires relatively
little of the total time spent grading programs.
Instructors do not seem to find the omission a
hardship.

One item on the original NCSU CMS project
list which has not yet been implemented is a
public assignment calendar. Academic computing
facilities are subject to severe demand peaks
caused by the occurrence, and particularly the
simultaneous occurrence, of class project dead­
lines. Although students quickly learn that
response time and terminal availability may be
degraded as an assignment deadline approaches,
they cannot easily anticipate the slowdowns caused
by assignments in other courses. If an updated
schedule of due dates for assignments in all
classes were available on line, students could
better manage their time. As an added benefit,
the demand peaks imposed on the system could be
reduced thereby. Appropriate software to imple­
ment this idea will probably be developed as time
permits.

8. SECOND THOUGHTS

NCSU CMS is new and experience with it is
limited. (The first regular Computer Science
classes began using it in January 1981.) It is
clear, however, that the planning effort expended
by the department has paid off. Instructors do
indeed have a powerful tool at their command, and
some of them are beginning to understand its real
potential. Ac tually, the grea tes t problem which
has been encountered has been the difficulty of
providing adequate faculty training. Handouts
have been prepared explaining functions of inter­
est to instructors, and one workshop has been held.
Unfortunately, CMS must be learned before the use
of any software on it can be, and the learning
process takes time. On-line help is available for
all EXEC's and there are a few people around who
can answer critical questions when emergencies
arise. Instructors have not always known just
what has been available to them, however, and thus
have not always known the right questions to ask.
These problems should diminish as experience is
gained with the system. Meanwhile, some amount of
"advertising" may be in order to promote intelli­
gent use of the facilities which have been pro­
vided.

The feature most in need of enhancement is
the ability to generate batch jobs for each stu­
dent, in order to evaluate programming assignments.
The initial software devised for the purpose relied
on the IBM-supplied pseudobatch facility CMSBATCH,
which has proved to be quite unsatisfactory. Other
CMS installations have replaced CMSBATCH with
locally-devised software, and NCSU may eventually
do the same. Meanwhile, the link to the System/370
has been utilized as the most reliable channel to a
batch processor, and an EXEC named RUNCLASS has
provided an adequate means to utilize this option.
Unfortunately, RUNCLASS requires the instructor to
generate a certain amount of control card informa­
tion in the form of IBM JCL statements, a task
universally disliked. This method may be replaced
in the future by a more interactive mode of opera­
tion which queries the instructor about his needs
and constructs JCL statements for him.

GRADE75 must be replaced eventually. (One
student project is now attempting to provide such a
replacement.) The current program is batch-ori­
ented and does not allow the instructor the capa­
bility of specifying different grading schemes and
immediately seeing their effects. Nor does the
present implementation allow students to see their
grades unless the grades are posted on a bulletin
board. Why not simply have the grades on the class
disk and avoid the printing process altogether?

The student-teacher communication channels
which have been made available constitute one of
the more exciting features of NCSU CMS, and
instructors are devising novel uses for them.
Some homework has been collected this way, for
example. More interesting has been the alternative
of placing example programs on the class minidisk
rather than typing them and handing them out. Not
only is this usually easier, but students can run
and even modify the resulting "handout."

48

An interesting variation on the class
account structure involving a shared minidisk has
been the use of such a class by the teacher and
lab instructors teaching sections of CSC 101, the
introductory programming course at NCSU. All the
lab instructors have been given read/write access
to the class minidisk and update separate grade
files for their respective sections. A simple
EXEC is then used to collect these files and run
GRADE75 for the entire class. MESSAGES and NEWS
are used by these people as an electronic mail
service, a particularly helpful service for the
teacher's contacting the lab instructors, who are
part-time workers and full-time students.

The class structure used by Computer Science
has been quite effective, though perhaps it is not
the ideal arrangement. Limited resources have
prevented even consideration of one other scheme-­
giving each Computer Science major his own account
as a freshman and allowing him to keep it until he
graduates. Class affinity would then be defined
as it is for CTODISKG--with an explicit authoriza­
tion file. This idea is extremely attractive
because students would have more incentive to gain
facility with a system seen as a general-purpose
tool available to them for four years.

In this same vein, it has been gratifying to
see the enthusiasm with which students have taken
to using CMS. This seems to be due to a number of
factors, not the least of which is the new system
syndrome. Beyond this, however, CMS's EXEC2 com­
mand language, which is quite powerful, has
encouraged student experimentation. Students have
also enjoyed feeling closer to the "action"--the
people in charge of their machine are not across
town or even across campus, but in fact just down
the hall in the Computer Science Department. This
has been of benefit to student and department
alike. Students have accumulated valuable exper­
ience writing EXEC's for CMS, and much of the
Computer Science software now in use has been con­
tributed voluntarily by enthusiastic students.

Undoubtedly, much remains to be done and
redone to make NCSU CMS a convenient tool for
Computer Science instructors. The effort is
clearly worthwhile, however, and it is recommended
that faculties elsewhere consider whether they
could benefit from similar support on their inter­
active systems. Besides, we may better prepare
students to provide society with the powerful,
labor-saving computer tools it deserves if we
show them that we know how to provide such tools
for ourselves.

ACKNOWLEDGEMENTS

It is impossible to list all those people who
have had a hand in making NCSU C~S what it is
today. The efforts of Computer Science faculty
and especially Computer Science students have been
invaluable. The Computing Center staff has been
very cooperative also, and our debt to members of
the Triangle Universities Computation Center staff
who worked on a short-lived CMS implementation at
their facility is also substantial. To former
student Kurt Deitrick, however, must go a special
note of appreciation for his efforts directed

toward developing the basic structure of much of
the NCSU system, as well as for providing much of
the implementation effort.

REFERENCES

1. Deimel, L. E. and Clarkson, B. A. The Todisk­
Wat10ad System: a convenient tool for evalu­
ating student programs. Proc. 16th Annual SE
Regional ACM Conference, April 1978, pp. 168­
171.

2. Deime1, L. E. and Pozefsky, M. Implementation
of programming standards in a computer science
department. Proc. 17th Annual SE Regional ACM
Conference, April 1979, pp. 142-143.

3. Deimel, L. E. and Pozefsky, M. Requirements
for student programs in the undergraduate
computer science curriculum: How much is
enough? SIGCSE Bulletin 11, 1 (February 1979),
pp. 14-17.

4. Grier, S. A tool that detects plagiarism in
Pascal programs. SIGCSE Bulletin 13, 1
(February 1981), pp. 15-20.

5. Hsia, P. and Petry, F. E. A systematic
approach to interactive programming.
Computer 13, 6 (June 1980); pp. 27-34.

6. Robinson, S. S. and Soffa, M. L. An instruc­
tional aid for student programs. SIGCSE
Bulletin 12, 1 (February 1980), pp. 118-129.

49

